Fiscal, monetary, and health policy responses and implications for the economic outlook Part 2 of a COVID-19 webinar series

WITH ALAN BLINDER, BILL DUDLEY, JESSICA METCALF, AND WILLIAM FRIST, M.D. June 9, 1:00 p.m. ET Pre-registration required

<u>clfw</u>

SARS-CoV-2: state of the pandemic

C. Jessica E. Metcalf & B.T. Grenfell cmetcalf@princeton.edu

Early growth

Two key quantities: R_{0} , here = 2 \checkmark Serial interval:

Early growth

Two key quantities: R_{0} , here = 2 \checkmark Serial interval:

https://coronavirus.jhu.edu/map.html

With a serial interval of ~ 1 week and an R_0 of 2, cases double approximately every week (R_0 estimate: ~ 2 - 3)

Early growth

Two key quantities: R_{0} , here = 2 \checkmark Serial interval:

April-June

<u>Cumulative cases</u> saturating

Where are we now?

Daily cases: falling or flat

https://coronavirus.jhu.edu/map.html

This is the beginning

https://coronavirus.jhu.edu/map.html

This is the beginning

https://labmetcalf.shinyapps.io/serol1/

Estimates of the **proportion susceptible** range around ~2%, with only larger urban settings as high as ~20%.

Jul	Aug	Sept	Oct	Nov	Dec
		•	••		
Jul	Aug	Sept	Oct	Nov	Dec

Will climate reduce transmission?

lower temperatures may increase transmission

Coronaviruses are 'winter' pathogens: reduced humidity /

Year

Will climate reduce transmission?

Coronaviruses are '**winter**' pathogens: reduced humidity / lower temperatures may increase transmission

But magnitudes unlikely to overwhelm the effects of the large **pool of susceptible individuals.**

Year

Will climate reduce transmission?

What about other winter viruses?

The incidence of directly transmitted infections like influenza and RSV has fallen sharply relative to previous years.

national emergency

What about other winter viruses?

The incidence of directly transmitted infections like **influenza** and **RSV** has **fallen** sharply relative to previous years.

What about other winter viruses?

The incidence of directly transmitted infections like **influenza** and **RSV** has **fallen** sharply relative to previous years.

This could mean **larger future outbreaks** as susceptible build up.

Interventions have flattened the curve.

Bought time to build knowledge:

- role of pre-symptomatic transmission
- role of super-spreading events
- ventilation & transmission
-
- therapeutics & vaccine development

https://www.nature.com/articles/s41591-020-0869-5

https://hopkinsidd.github.io/nCoV-Sandbox/DispersionExploration.html

Interventions have flattened the curve.

Policies implemented:

- Case based self-isolation mandated
- Social distancing encouraged
- Public events banned
- School closure ordered
- Lockdown ordered

https://science.sciencemag.org/content/early/2020/05/20/science.abb6144

Interventions have flattened the curve.

How do we evaluate these policies?

https://science.sciencemag.org/content/early/2020/05/20/science.abb6144

Interventions have flattened the curve.

How do we evaluate these policies?

Pilot loosening one intervention for two weeks in a subset of locations.

This is the beginning: most of the world is **still susceptible to a highly transmissible and lethal pathogen**; yet the state of lockdown in place in many settings is **not sustainable**.

This is the beginning: most of the world is still susceptible to a highly transmissible and lethal pathogen; yet the state of lockdown in place in many settings is **not sustainable**.

This is the beginning: most of the world is **still susceptible to a highly transmissible and lethal pathogen**; yet the state of lockdown in place in many settings is **not sustainable**.

The precautionary principle governed the early phases: now **data is needed** to understand **which interventions work**.

Evidence will come from many sources: from RCTs, to models probing drivers of transmission, to statistical & other analyses of impacts beyond infection.

Jul	Aug	Sept	Oct	Nov	Dec

This is the beginning: most of the world is still susceptible to a highly transmissible and lethal pathogen; yet the state of lockdown in place in many settings is **not sustainable**.

The precautionary principle governed the early phases: now data is needed to understand which interventions work.

> **Evidence will come from many sources:** from RCTs, to models probing drivers of transmission, to statistical & other analyses of impacts beyond infection.

Resources

Illustrating model calibration and serology: https://labmetcalf.shinyapps.io/serol1/

An Immune Observatory to meet a time of pandemics https://elifesciences.org/articles/58989

Seasonality and SARS-CoV-2 https://science.sciencemag.org/content/early/2020/05/15/science.abc2535

Evaluating interventions: https://science.sciencemag.org/content/early/2020/05/20/science.abb6144

SARS-CoV-2 in children: https://cjelandm.github.io/Metcalf-Children-9thJune.pdf

Thank you!

C. Jessica E. Metcalf cmetcalf@princeton.edu @CJEMetcalf

https://eebcovid19.princeton.edu/