Fiscal, monetary, and health policy responses and implications for the economic outlook

Part 2 of a COVID-19 webinar series

WITH ALAN BLINDER, BILL DUDLEY, JESSICA METCALF, AND WILLIAM FRIST, M.D.

June 9, 1:00 p.m. ET
Pre-registration required
SARS-CoV-2: state of the pandemic
Early growth

Two key quantities:
R_0, here = 2
Serial interval:

https://coronavirus.jhu.edu/map.html
Early growth

Two key quantities:
- R_0, here = 2
- Serial interval:

With a serial interval of ~ 1 week and an R_0 of 2, cases double approximately every week (R_0 estimate: ~ 2 - 3)

https://coronavirus.jhu.edu/map.html
Early growth

Two key quantities:
R_0, here = 2
Serial interval:

Intervention impacts appear 2-3 weeks in the future.
April-June

Cumulative cases saturating

Intervention impacts appear 2-3 weeks in the future.
Where are we now?

Daily cases: falling or flat
This is the beginning

Estimates of the **proportion susceptible** range around \(\sim 2\% \), with only larger urban settings as high as \(\sim 20\% \).
Coronaviruses are ‘winter’ pathogens: reduced humidity / lower temperatures may increase transmission

Will climate reduce transmission?

https://science.sciencemag.org/content/early/2020/05/15/science.abc2535
Coronaviruses are ‘winter’ pathogens: reduced humidity / lower temperatures may increase transmission

But magnitudes unlikely to overwhelm the effects of the large pool of susceptible individuals.
Will climate reduce transmission?
What about other winter viruses?

The incidence of directly transmitted infections like influenza and RSV has fallen sharply relative to previous years.
What about other winter viruses?

The incidence of directly transmitted infections like influenza and RSV has fallen sharply relative to previous years.
What about other winter viruses?

The incidence of directly transmitted infections like influenza and RSV has fallen sharply relative to previous years.

This could mean larger future outbreaks as susceptible build up.
Which interventions work best in a pandemic?

Interventions have flattened the curve.

Bought time to build knowledge:
- role of pre-symptomatic transmission
- role of super-spread events
- ventilation & transmission
- ...
- therapeutics & vaccine development

https://www.nature.com/articles/s41591-020-0869-5
https://hopkinsidd.github.io/nCoV-Sandbox/DispersionExploration.html
Which interventions work best in a pandemic?

Interventions have flattened the curve.

Policies implemented:
• Case based self-isolation mandated
• Social distancing encouraged
• Public events banned
• School closure ordered
• Lockdown ordered

https://science.sciencemag.org/content/early/2020/05/20/science.abb6144
Which interventions work best in a pandemic?

Interventions have flattened the curve.

How do we evaluate these policies?

https://science.sciencemag.org/content/early/2020/05/20/science.abb6144
Which interventions work best in a pandemic?

Interventions have flattened the curve.

How do we evaluate these policies?

Pilot loosening one intervention for two weeks in a subset of locations.
Conclusions

This is the beginning: most of the world is **still susceptible to a highly transmissible and lethal pathogen**; yet the state of lockdown in place in many settings is **not sustainable**.
Conclusions

This is the beginning: most of the world is still susceptible to a highly transmissible and lethal pathogen; yet the state of lockdown in place in many settings is not sustainable.

The precautionary principle governed the early phases: now data is needed to understand which interventions work.
Conclusions

This is the beginning: most of the world is still susceptible to a highly transmissible and lethal pathogen; yet the state of lockdown in place in many settings is not sustainable.

The precautionary principle governed the early phases: now data is needed to understand which interventions work.

Evidence will come from many sources: from RCTs, to models probing drivers of transmission, to statistical & other analyses of impacts beyond infection.
Conclusions

This is the beginning: most of the world is **still susceptible to a highly transmissible and lethal pathogen**; yet the state of lockdown in place in many settings is **not sustainable**.

The precautionary principle governed the early phases: now **data is needed** to understand which interventions work.

Evidence will come from many sources: from RCTs, to models probing drivers of transmission, to statistical & other analyses of impacts beyond infection.

International collaboration on drug & vaccine development & deployment is urgent.
Illustrating model calibration and serology:
https://labmetcalf.shinyapps.io/serol1/

An Immune Observatory to meet a time of pandemics
https://elifesciences.org/articles/58989

Seasonality and SARS-CoV-2
https://science.sciencemag.org/content/early/2020/05/15/science.abc2535

Evaluating interventions:
https://science.sciencemag.org/content/early/2020/05/20/science.abb6144

SARS-CoV-2 in children:
https://cjelandm.github.io/Metcalf-Children-9thJune.pdf

Thank you!

C. Jessica E. Metcalf
cmetcalf@princeton.edu
@CJEMetcalf