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Abstract

This paper examines how the price of home heating affects mortality in the US.

Exposure to cold is one reason that mortality peaks in winter, and a higher heating price

increases exposure to cold by reducing heating use. Our empirical approach combines

spatial variation in the energy source used for home heating and temporal variation in

the national prices of natural gas and electricity. We find that a lower heating price

reduces winter mortality, driven mostly by cardiovascular and respiratory causes. Our

estimates imply that the 42% drop in the natural gas price in the late 2000s, mostly

driven by the shale gas boom, averted 12,500 deaths per year in the US. The effect

appears to be especially large in high-poverty communities.
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1 Introduction

Many families worldwide struggle to heat their homes each winter. Their heating bills

are so high relative to their income that they are considered to be living in “fuel poverty.”

In the European Union, 8% of households are unable to keep their homes adequately warm

in winter (Eurostat 2021). In the United States, 17% of households spend over 10% of their

income on home energy; winter heating is the largest contributor (RECS 2009). The problem

becomes even more acute during energy crises. For example, when natural gas supply was

disrupted after Russia’s invasion of Ukraine in 2022, heating prices soared in many parts of

the world, pushing millions of additional households into fuel poverty.

Households face a difficult trade-off when heating prices are high: They have to keep

their home uncomfortably cold to save on heating, or they have to forgo other spending to

afford their high heating bill. Either choice could be harmful to their health. Using less

heating means exposure to lower ambient temperature, which has been linked to cardiovas-

cular, respiratory, and other health problems. But if families do not cut back heating usage

one-for-one when the price rises, their energy bills will increase, leaving less money for other

expenditures that affect health such as food and health care. For these reasons, morbidity

and mortality are potentially important consequences of high heating prices.

This paper estimates the effect of heating prices on mortality in the US. A large literature

has documented that mortality peaks in winter (see Appendix Figure A1) and that cold

weather is associated with higher mortality. Our contribution is to examine whether high

home heating costs exacerbate this pattern of “excess winter mortality.”

Our empirical design uses spatial variation across the US in the energy source used

for home heating. Natural gas and electricity are used for heating by 58% and 30% of

US households, respectively. Importantly, there is considerable variation across counties in

whether natural gas versus electricity is mainly used. We combine this spatial variation

with temporal variation in the national prices of natural gas and electricity. The price of

natural gas varied substantially over the 2000 to 2010 study period, relative to the price of

electricity; it first rose, partly due to supply disruption from Gulf of Mexico hurricanes, and

then fell after 2005, mostly due to the supply influx from shale production of natural gas
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(Hausman and Kellogg 2015). We use the fact that when the price of natural gas rose or

fell, households in areas that rely on natural gas for heating experienced a rise or fall in their

home heating price, relative to households in areas reliant on electricity.

We find that lower heating prices reduce mortality in winter months.1 The estimated

effect size implies that the 42% drop in the price of natural gas in the late 2000s averted 12,500

winter deaths per year in the US. Moreover, we find that this effect does not just represent

a short-run postponement of mortality. We also show that the effect, which is driven mostly

by cardiovascular and respiratory causes and is larger in high-poverty communities, is robust

to several stress tests of the empirical specification.

Our findings have implications for policies that reduce households’ heating costs such as

the federal Low Income Home Energy Assistance Program (LIHEAP) and state energy price

subsidy programs in the US (see, e.g., Hahn and Metcalfe (2021)) and analogous policies

worldwide, and are also relevant for cost-benefit analysis of weatherization programs that

reduce households’ need for heating. In addition, our findings highlight a health benefit of

increases in US energy supply that has not received much prior attention.

Our paper contributes to the literature on the effects of cold weather on mortality (Eu-

rowinter Group 1997; Analitis et al. 2008; Deschênes and Moretti 2009) and other dimensions

of well-being (Ye et al. 2012; Bhattacharya et al. 2003; Cullen et al. 2004; Beatty et al. 2014).

To our knowledge, no prior study has estimated the causal effect of heating prices — an im-

portant and policy-relevant mediating factor — on health. Previous work has found that the

winter spike in mortality is especially large for people living in older housing, which tends

to be poorly insulated, which is suggestive but not dispositive that indoor temperature is a

mediating factor (Wilkinson et al. 2007).

Another related line of research examines adaptations that mitigate the temperature-

health relationship. Previous research has examined the role of technological and medical

advances (Barreca et al. 2016; Deschênes and Greenstone 2011), migration (Deschênes and

Moretti 2009), and weatherization and energy-efficiency programs (Critchley et al. 2007;

El Ansari and El-Silimy 2008; Green and Gilbertson 2008; Howden-Chapman et al. 2007).

1We define “winter” as November to March, the coldest months of the year in the US (see Appendix
Figure A1).We also show the results using December to March, similar to analyses of excess winter mortality
in the UK and Europe where those are the coldest months (Wilkinson et al. 2004)
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Increased heating use is another important household-level adaptation, and we contribute by

analyzing how high fuel prices stymie this adaptation. A study concurrent to ours analyzes

the aftermath of the Fukushima nuclear power plant accident in Japan and finds that higher

electricity prices exacerbate the relationship between cold temperatures and mortality (Nei-

dell et al. 2021). An advantage of our research design is that we can directly identify changes

in the price of heating (by incorporating geographic variation in the energy source used for

heating) instead of energy prices more broadly, which might also affect health through other

channels. Additionally, we shed light on the relative importance of the different mechanisms

through which a higher heating price increases mortality.2

Our paper also contributes to the literature on the health effects of the shale gas (or

“fracking”) boom by highlighting a national-level health benefit — the drop in energy prices

reduced winter mortality. Prior work has highlighted the health benefit of fracking displacing

pollutive coal in electricity generation (Cullen and Mansur 2017; Fell and Kaffine 2018;

Holladay and LaRiviere 2017; Knittel et al. 2015; Linn and Muehlenbachs 2018). Fracking

has also been shown to be harmful because of local contamination from the chemicals used

(Jackson et al. 2014; Groundwater Protection Council 2009; Muehlenbachs et al. 2015; Casey

et al. 2016; Currie et al. 2017; Hill 2018). The health harm from the toxic chemicals is likely

much larger per person affected than the health benefits from lower energy prices; however,

the latter channel affects a much larger population. Thus, the net health effect of fracking

aggregated for the whole US population is ambiguous. Finally, our empirical strategy is

similar to that of Myers (2019) who compares households that use heating oil or natural gas

in Massachusetts to study whether home energy costs are capitalized into home values.

2 Empirical strategy

To identify the effect of heating prices on mortality, we combine information on whether

a locality typically uses natural gas or electricity for heating with data on national energy

prices. This approach enables us to control for average differences across localities and time.

2Other studies have focused on financial assistance for energy bills or heating subsidies for low-income
families (Frank et al. 2006; Grey et al. 2017; Crossley and Zilio 2018).
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2.1 Estimating equations

In principle, we want to estimate the following equation:

log(mjt) = α + β log(pHjt) + ϵjt. (1)

Each observation is a county-month. The outcome log(mjt) is the log of age-adjusted mor-

tality in county j in month t. (We use the log of the mortality rate following Stevens et al.

(2015), but also report the results in levels.) The key regressor is log(pHjt), the log of the

heating price for the county-month. The coefficient β measures the elasticity of mortality

with respect to the heating price. The hypothesis is that β > 0: A higher heating price

increases mortality.

There are no data on pHjt because utilities do not set a price specifically for heating, just

for different energy sources. Instead, we construct a proxy for the heating price by interacting

ShareGasjt, the proportion of households in the area that used natural gas for heating in

that year, with log(RelPricejt), the ratio of the price of gas to electricity in the state-month.

To see why this interacted variable tracks the heating price for households, note that when

natural gas prices increase (high RelPrice), areas with high ShareGas face relatively higher

heating prices. Conversely, when electricity prices increase (low RelPrice), areas with higher

ShareGas face relatively low heating prices. In practice, most of the identifying variation

comes from the natural gas price because it fluctuates more over the study period.3

Utilities markets within the US vary considerably in terms of prices and regulations,

which means that ShareGasjt×log(RelPricejt) could be endogenous to local demand. To

solve this problem, our empirical strategy relies on national-level energy prices combined

with (pre-period) local variation in the energy source for heating. That is, we instrument

for ShareGasjt×log(RelPricejt) with ShareGasj,2000×log(RelPriceUS,t).
4

3Our results are similar if we replace RelPrice with the price of natural gas, with or without controlling
for ShareGas interacted with the electricity price.

4Formally, ShareGasj,2000×log(RelPriceUS,t) = ShareGasj,2000 log(p
G
US,t) + ShareElecj,2000 log(p

E
US,t) −

log(PE
US,t), where ShareElecj,2000 is the proportion of households in 2000 that use electricity for heating,

and pGUS,t and pEUS,t are the national prices of natural gas and electricity, respectively. Month-year fixed

effects absorb log(pEUS,t). The first two terms on the right capture the average proportional change in the
heating price across households in a county (some uses gas, while others use electricity as their main heating
source), i.e., it is an exogenous proxy for log(pHjt).
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We estimate the following equation with this instrumental variables approach:

log(mjt) = α + β ShareGasjt×log(RelPricejt) + γj + τt + θZj×log(RelPriceUS,t)

+ δXjt + ϵjt, (2)

where the first stage equation is as follows:

ShareGasjt×log(RelPricejt) = α̃ + β̃ ShareGasj,2000×log(RelPriceUS,t) + γ̃j + τ̃t

+ θ̃Zj×log(RelPriceUS,t) + δ̃Xjt + νjt. (3)

In addition to replacing log(pHjt) with ShareGasjt×log(RelPricejt), we augment equation

(1) by including county fixed effects, γ, and month-year fixed effects, τ. We also include

several control variables, denoted by the vector X. Because the study period spans the

housing market boom and bust as well as the Great Recession, we control for a housing price

index, the unemployment rate, and the manufacturing share of local employment income. X

also includes factors that might affect mortality, namely air pollution — particulate matter

2.5 and 10 microns, separately, and nitrogen dioxide — absolute humidity, and the heating

degree-days (HDD) of the area (a measure of coldness, described in Section 3). We addi-

tionally include nitrogen dioxide as a quadratic term to control for it more flexibly because

we find that it is correlated with ShareGasj,2000×log(RelPriceUS,t). The humidity-mortality

relationship is non-linear (Barreca and Shimshack 2012), so we also control for a quadratic

term in absolute humidity. Finally, we control for area characteristics Z, specifically pre-

period log income (25th, 50th, and 75th percentiles) and the share of the population over

age 70, interacted with log(RelPriceUS,t); these controls help safeguard against a spurious

correlation due to the Great Recession (or another phenomenon with a similar temporal

pattern as log(RelPriceUS,t)) having a differential impact on mortality across socioeconomic

or demographic groups (Hoynes et al. 2012).

The identification assumption is that when natural gas prices are high relative to elec-

tricity, places with more natural gas usage for heating have higher mortality only because

of the higher heating price they face, conditional on fixed effects and control variables.
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Throughout, we cluster standard errors by state to allow for serial correlation plus spatial

correlation among counties in a state.

For our baseline specification, we restrict the data to only winter months (when pos-

sible) when most of the year’s heating is consumed. We also estimate a winter/non-winter

specification that uses the non-winter months as an additional comparison group, testing the

prediction that the price of heating affects mortality more in winter than in the remaining,

warmer months:

log(mjt) = α + λ1 ShareGasjt×log(RelPricejt)×Wintert

+λ2 ShareGasjt×log(RelPricejt)

+λ3 ShareGasj,2000×Wintert +λ4 log(RelPriceUS,t)×Wintert

+θ1Zj×log(RelPriceUS,t)×Wintert +θ2Zj×log(RelPriceUS,t)

+θ3Zj×Wintert +γj + τt + δXjt + ϵjt (4)

Analogous to before, the first two regressors are instrumented using ShareGasj,2000× log(RelPriceUS,t)

and ShareGasj,2000×log(RelPriceUS,t)×Wintert. The prediction is λ1 > 0.

Some winters or particular months in winter are colder than others, so we can also

replace Winter with HDD. In this specification, we control for the county’s average HDD in

winter, HDDj, in parallel to HDDjt to adjust for systematic differences (e.g., demographics)

between colder regions such as the Midwest and warmer ones such as the South.

2.2 Assessing the heating and non-heating consumption channels

Heating prices can affect mortality through two channels: a cutback in heating use

(“heating channel”) and a reduction in the income left over for other consumption after

paying the heating bill (“non-heating channel”). To gauge the potential relevance of each

channel, we analyze two additional outcomes.

The first one is the (log) quantity of home energy use. Here, the coefficient β from

equation (2) can be interpreted as a price elasticity. We expect it to be negative: Consumers

substitute away from heating when it becomes more expensive. The data on home energy

use do not disaggregate it by purpose (e.g., heating, lighting). Thus, while the variation in
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the price of natural gas is mainly measuring variation in a household’s heating price, the

outcome combines heating plus other energy uses, so the coefficient represents a lower bound

magnitude for the price elasticity of heating demand. The use of natural gas in homes is

mostly for heating (space heating and water heating), with an additional small contribution

from kitchen ranges and clothes dryers. Non-heating home energy needs such as lighting,

refrigeration, and air conditioning predominantly use electricity throughout the US. Home

heating is the largest component of home energy use, accounting for 42% of annual home

energy consumption, with water heating accounting for an additional 18% (RECS 2009).

The second outcome is expenditures on home energy, again with the caveat that we

cannot distinguish spending on heating from other energy uses (although in winter months,

heating accounts for most energy use). If households are not cutting back one-for-one when

the price rises, then higher energy prices will lead to higher energy bills (and thus less income

left for other consumption).

2.3 Geographic variation in heating source

Natural gas and electricity are the two most common energy sources for home heat-

ing in the US, with considerable geographic variation. In some communities, almost every

household uses natural gas for heating, and in other communities, almost no one does.

Figure 1 shows the share of households using natural gas as their heating source across

counties, based on 2000 US Census data.

Whether a locality uses natural gas, electricity, or another heating source is not random,

and various factors explain the differences. Natural gas pipelines do not extend to some parts

of the US, such as Maine. Areas that are well-suited for hydroelectric power generation have

low electricity costs and thus rely more on electricity. For historical reasons, much of the

Northeast uses heating oil, a petroleum product, instead of gas or electricity. Importantly,

the geographic differences were determined long before the study period and are highly

persistent. Being predetermined does not rule out that an area’s heating source is correlated

with other factors affecting mortality, so the analysis controls for other locality characteristics

in parallel to heating source. This guards against the endogeneity of shares emphasized by
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Goldsmith-Pinkham et al. (2020).5

2.4 Temporal variation in energy prices

Figure 2 plots the national prices of natural gas and electricity over the 2000 to 2010

study period. The data source is the US Energy Information Administration (EIA). Natural

gas is one of the fuel sources used in electricity generation, so the two prices co-move, but far

from in lockstep. Electricity prices changed somewhat over the time period, while natural

gas prices rose and then fell much more dramatically. As a result, the relative price of natural

gas to electricity rose and then fell over the period.

Natural gas prices rose from 2004 to 2005 due in part to supply disruptions from major

hurricanes along the Gulf coast (Hurricane Ivan in 2004 and Hurricanes Katrina and Rita in

2005) (Brown and Yücel 2008). In addition, increased efficiency of producing electricity from

natural gas boosted demand for natural gas during the early 2000s (Hartley et al. 2008). A

main cause of the natural gas price decline in the mid-2000s was the sharp increase in shale

gas production (plotted in Figure 2); Hausman and Kellogg (2015) estimate that increased

supply from shale gas explains 83% of the 2007-2013 decline in the price of natural gas.6

2.5 Home heating versus other heating

While we sometimes refer to our results as due to home heating, the analysis cannot

isolate home heating from other indoor (e.g., workplace) heating. Some policy implications,

such as whether to promote increased energy supply, are similar whether the channel is home

heating or other indoor heating. For other policies, such as subsidies for consumer heating

bills, it would be valuable to isolate heating costs at home, which our research design does

not permit. A related, more minor limitation is that we cannot separate the effect of space

heating from water heating; the energy source is the same in most households (RECS 2014),

and both types of heating likely affect health through similar mechanisms.

5Users of natural gas can partially substitute to electric space heaters in the short run, but there is no
low-cost short-run way to substitute in the other direction. In Appendix Table A1, we find little evidence of
changes in heating source in response to changes in relative prices.

6To investigate whether the price decline is also due to lower demand for natural gas during the Great
Recession, we estimated the relationship between RelPricejt and the unemployment rate (a proxy for the
Great Recession intensity). The regression coefficient is small and statistically insignificant (see Appendix
Table A2).
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3 Data

Our analysis focuses on the contiguous US between 2000 and 2010. This section de-

scribes our data sources, with further details in Appendix B.

3.1 Mortality

We construct the county-year-month age-adjusted mortality rate from restricted-use Vi-

tal Statistics microdata. We exclude counties with a small population over age 50, specifically

those in the bottom decile of counties, as they have few (often zero) deaths per month.7

We focus on causes of mortality that exhibit a high degree of excess winter mortality

(EWM). Overall mortality is higher in winter than the rest of the year, but the pattern

is more pronounced for some causes than others. We zero in on these causes because it

is most plausible that they are exacerbated by exposure to cold and also because doing so

increases statistical power. We use a data-driven approach to determine these causes. Using

monthly data, we estimate a regression of log age-adjusted mortality for the entire US on

a dummy for winter, separately for each of the 113 National Center for Health Statistics

(NCHS) Selected Causes of Death. Causes with a large positive winter coefficient have more

excess mortality in winter. We also estimate the model in levels to exclude minor causes that

might have spuriously large coefficients. We select the causes whose winter coefficients are in

the top quartile in both levels and logs, excluding two causes where there is no clear direct

physiological link to cold exposure (“deaths from smoke, fire, and flames” and the residual

category, “all other diseases”). The final 14 causes are within four alphabetic (i.e., broad)

categories, and generally match the causes highlighted in the literature as exacerbated by

cold (e.g., cardiovascular, respiratory). These high-EWM causes (hereafter, EWM causes)

account for 61% of total mortality and 63% of total mortality in winter. Appendix Table

A3 lists the 14 EWM causes, and Appendix Figure A2 shows the seasonality for EWM and

non-EWM causes.

7These small counties constitute 0.37% of total population and 0.45% of total deaths in 2000. Among
our retained counties, less than 0.03% of all county-month observations have zero deaths.
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3.2 Independent variables

We construct county-level ShareGasj,2000 using the 2000 Census Summary Files. For

subsequent years, we use the American Community Survey (ACS), which is available starting

in 2005, and linearly interpolate for years without data. (ShareGas is highly correlated over

time — the correlation between ShareGas in 2000 and 2010 is 0.95.)

RelPrice, the ratio of the price of gas to electricity, is constructed using monthly state

(for the endogenous heating price proxy) and national (for the instrument) price data from

EIA. The appropriate specification depends on the timing of consumers’ response to RelPrice.

Similar to Auffhammer and Rubin (2018), we find that residential energy use responds to

RelPrice with a lag of three months. Consumers seem to cut back on usage only after

seeing their energy bill, which typically arrives a few weeks after the billing period ends.

In addition, the health effects of cutbacks in heating use or paying higher bills might not

be instantaneous. Hence, we use the average of the three- and four-month lagged price to

construct RelPrice. We find similar results when we reduce the lag by one month or use

annual prices. To investigate if the mortality effects materialize with a longer delay, we also

estimate models that incorporate mortality effects in subsequent, post-winter months; the

effect in subsequent months could also be negative if deaths are hastened by only a short

duration (“harvesting”).

The analysis also incorporates temperature data. We use daily average temperature

(PRISM Climate Group 2004) to compute the heating degree-days (HDD) for each county-

month. HDD is a commonly used measure of coldness — or need for heating — based on the

idea that heating demand is linear in temperature when the temperature falls below 65°F.

That is, HDDjt =
∑T

x=1max{65 − tmeanjtx, 0} where tmean is the mean temperature of

area j on day x of month t, and T is the number of days in month t. Appendix B provides

details on the data sources for our control variables.

3.3 Other dependent variables

An auxiliary outcome we examine is the average price of home energy that consumers

face. Our specification uses ShareGasjt×log(RelPricejt) as a proxy for the home heating price

faced by households. We do not have household-level data on heating prices, but we can
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use aggregate administrative data on residential energy prices to verify that our regressor

is a good proxy for household heating prices. The dependent variable we use for this is

the weighted average of the local prices of natural gas and electricity, where weights are

the local consumption levels of each energy source. Price and usage data are aggregated

state-month-level data from EIA.

As discussed in Section 2.2, we also examine residential energy use. We sum natural

gas and electricity usage from EIA data. To examine household spending on home energy,

we combine 2000 Census microdata and ACS data for 2005 to 2010, aggregated to the

county-year level.

4 Results

We first present results on the intermediate outcomes of home energy prices, quantity

of energy consumed, and energy bills. We then present the mortality results.

4.1 Effect of heating price on energy use and spending

We start by examining the usage-weighted average price of residential natural gas and

electricity prices. Each observation is a state-month. As shown in Table 1, columns 1 and

2, home energy prices are strongly positively correlated with the heating price proxy. In

column 1, we include only state and month-year fixed effects. In column 2, we add our

other control variables. The coefficient on the heating price proxy is less than 1 because the

outcome is the average energy price, while the regressor is a proxy for the average heating

price. Heating comprises roughly 40% of annual home energy use, so we would expect a 10%

change in the heating price to lead to a 4% change in the home energy price, or a coefficient

of 0.4. The estimated coefficient of 0.36 is quite close to this.

We next quantify how heating prices affect households’ energy use and energy bills. (In

principle, once we know one of these numbers, we could calculate the other, but showing

both is useful given that the data are available at different geographic levels and based on

different samples.) First, we examine the impact on energy usage, shown in Table 1, columns

3 and 4. As expected, higher prices lead to less energy consumption.8 Both the outcome

8Appendix Table A4 shows that this cutback in usage occurs three months after the increase in the
heating price, as stated in Section 3.2.
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and key regressor are in logs, so the coefficient represents an elasticity. The coefficient of

-0.093 implies that households cut back usage quite a bit, but not one-for-one with price.

To quantify the energy-use elasticity, one needs to scale the coefficient by the corresponding

price-change coefficient from columns 1 and 2.9 We report the implied elasticity, which is

-0.26, at the bottom of the table. This elasticity is similar to the winter natural gas demand

elasticity for California estimated by Auffhammer and Rubin (2018) and Hahn and Metcalfe

(2021). In Appendix Table A5, we show that the estimates based on our winter/non-winter

specification are similar.

The elasticity having a magnitude less than 1 implies that households are spending

more money on energy expenses when the heating price increases. We verify this using

Census/ACS data. Columns 5 and 6 of Table 1 show that the heating price shock is associated

with a 25 log point increase in energy expenses. If the result is driven by changes in winter

expenses, then the coefficient is an underestimate of the impact during winter months. (We

cannot isolate spending in winter because the ACS does not release the survey month, and

the Census asks about annual spending on energy bills.) Columns 7 and 8 examine the

outcome in levels: a 10% increase in the price of heating is associated with a $5 (in 2016

USD) increase in the monthly home energy bill, averaged over the year. To help interpret

these magnitudes, note that the relative price of natural gas fell by 42% (54 log points)

between 2005 and 2010. This price decline led to a 13% or $330 annual decrease in energy

bills for natural gas users, using the estimates in columns 6 and 8, respectively.

To summarize, we find that households meaningfully reduce their heating use in response

to an increase in their heating price, and they also experience an increase in their energy

bills.10

9The relevant scale factor to convert our mortality results into an elasticity of mortality with respect to
the heating price is 1; ShareGasjt×log(RelPricejt) incorporates information on heating sources and hence is
a better proxy of the heating price than the average energy price.

10We also investigated the impact of heating prices on households’ other non-energy expenditure patterns
using the Consumer Expenditure Survey (CEX) data (Appendix Table A6). We find statistically insignif-
icant effects, with large confidence intervals, for all broad categories of expenditure including food and
alcoholic beverages; non-durable goods; and all non-energy expenditures. The effect on health expenditures
is significant at 10% level.
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4.2 Effect of heating price on mortality

We now turn to estimating the effect of heating prices on mortality. Table 2 shows that

a higher (log) heating price increases the (log) mortality rate.11 Column 1 reports results for

all-cause mortality, controlling for all fixed effects and control variables listed earlier. The

elasticity of all-cause mortality with respect to the heating price is 0.032 (p < 0.05).12

Column 2 presents results for EWMmortality. An increase in the heating price increases

EWM mortality, with an elasticity of EWM mortality with respect to price of 0.059 (p <

0.01).13 Given that EWM causes account for 63% of total mortality in winter, the implied

elasticity of total mortality is 0.037, similar to the elasticity using all-cause mortality.

We next examine non-EWM mortality. As shown in column 3, the coefficient for the

heating price proxy is very close to 0 and statistically insignificant. Non-EWM causes are,

by and large, not exacerbated by exposure to cold, so the heating use channel is not applica-

ble. However, this is not a placebo test because the non-heating consumption channel (less

income to spend on non-heating expenditures) should affect non-EWM mortality. Under the

assumption that the non-heating channel has similar effects on EWM and non-EWM mor-

tality, the lack of an effect of heating prices on non-EWM mortality indicates the importance

of the heating channel — changes in heating use seem to drive the effect of heating prices

on mortality.

Columns 4 to 7 disaggregate the effects by broad EWM category: The overall effect

on EWM mortality is mainly driven by circulatory and respiratory causes. Appendix Table

A11 reports results separately for each of the 14 EWM causes. The largest effect sizes are

for emphysema, other chronic lower respiratory diseases, acute myocardial infarction, and

pneumonia. Interestingly, the price of heating does not exacerbate influenza mortality.

The effects we estimate are not due to deaths being moved earlier by just a short

11Appendix Table A7 shows the first stage of the instrumental variables regression. Appendix Tables A8,
A9, and A10 show robustness to using the age-adjusted mortality rate in levels, weighting regressions by the
population in 2000, and using only natural gas variation for identification.

12We also investigated the effect on morbidity using the Heath and Retirement Study and on hospitaliza-
tions using the National Inpatient Sample, but due to the smaller sample sizes, we were underpowered to
detect even elasticities much larger than our estimated elasticity for mortality.

13Appendix Figure A3 shows a binned scatterplot of the relationship between EWM mortality and the
instrument.
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duration, or “harvesting.” Appendix Table A12 shows that the cumulative mortality effect

is stable in magnitude when we incorporate effects in subsequent months. (For simplicity,

the table reports reduced-form estimates.) The cumulative effect is statistically significant

at at least the 5 percent level when we add up to three subsequent months and marginally

significant up to six months. There is not enough statistical power to determine at what point

the cumulative effect becomes essentially zero. (Note that the coefficient for any specific lag

is difficult to interpret because RelPrice is serially correlated and we have a finite number of

months in the sample.)

We next bring in data for non-winter months to estimate the winter/non-winter specifi-

cation. We use either Winter (Table 2, column 8) or HDD (column 9) to construct the addi-

tional comparison. Column 8 shows that the effect of heating prices on mortality is stronger

in winter than the rest of the year. Reassuringly, the coefficient on the non-interacted heating

price proxy is close to zero: the price of heating having no effect on mortality in non-winter

months can be thought of as a placebo test.

Using HDD, we find that the price of heating increases mortality more in colder months.

HDD is normalized so that a unit change is the difference between every day in the month

being 65°F or above and being 32°F. As reported in column 9, a one-unit increase in HDDjt,

relative to the county’s average winter HDD, leads to a 0.090 higher elasticity of EWM

mortality with respect to the heating price.14

The results are similar but somewhat weaker when we do not control for average HDD

and thus use average differences across places in the severity of their winters as additional

identifying variation (see Appendix Table A13). This is consistent with previous findings

that, due to adaptation (e.g., better insulated homes in colder places), atypical cold for an

area is what especially affects mortality (Eurowinter Group 1997).

Appendix Tables A14 and A15 show robustness of our results to varying the definitions of

winter, RelPrice, or ShareGas; excluding states with high shares of other heating fuel sources;

excluding shale-gas-producing states; dropping the Great Recession period; controlling for

LIHEAP, additional air pollutants, or a richer set of controls using a double-selection post-

14The coefficient on the heating price proxy is not interpretable because we control for the county’s average
winter HDD in parallel to HDDjt (see Appendix C.1).
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LASSO method; estimating the effects at the state level or using only within-Census division

variation for identification; and varying the main set of control variables. Appendix C.2

discusses these robustness checks.

4.3 Heterogeneous effects on mortality

Table 3 augments the baseline specification to examine heterogeneous effects by poverty.

Heating bills comprise a larger share of expenditures for the poor. For this reason, as well

as the poor having lower baseline health and less access to health care, we expect heating

prices to have larger effects on mortality among the poor. Columns 1 to 4 each use a different

poverty proxy. In column 1, the proxy is whether the county’s median income is in the bottom

half of the distribution across counties. Columns 2 and 3 use the county’s share of households

below 150% of the federal poverty line, as either a continuous variable or an indicator for

being below the sample median. Column 4 uses the decedent’s education level, specifically

an indicator for no high school degree. Across the board, the point estimates suggest larger

effects among the poor, but the finding is only statistically significant in columns 2 and 3,

which use the share of households below 150% of the poverty line.

Finally, Table 3, columns 5 and 6, show that the mortality effects do not significantly

differ by sex or race. In Appendix C.3, we discuss heterogeneity by age groups.

5 Conclusion

This paper finds that lower heating prices reduce winter mortality. To put the estimated

elasticity of all-cause mortality with respect to the price of heating of 0.032 in context, the

price of natural gas relative to electricity fell by 42% between 2005 to 2010. Our findings

imply that this price decline caused a 1.7% decrease in the winter mortality rate for house-

holds using natural gas for heating. Given that 58% of American households use natural gas

for heating, the drop in natural gas prices reduced the US winter mortality rate by 1.0%, or,

equivalently, the annual mortality rate by 0.4%. This represents 12,500 deaths per year. In

terms of welfare, our results map to approximately $103 billion using a value of statistical

life year of $369,000 in 2016 dollars (Kniesner and Viscusi 2019). This national-level benefit

from averted deaths is twice as large as the local economic gains from fracking and should
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not be ignored when evaluating the effects of shale gas production (see Appendix C.4 for

details). This estimate includes only relatively immediate effects, and the total benefit could

be larger if there are also morbidity effects that affect mortality further out than six months.

Our results suggest that reduced heating use (as opposed to other spending cutbacks house-

holds make when they face high heating bills) is the key channel through which expensive

heating increases mortality.

Soaring energy prices in Europe caused by Russia’s 2022 invasion of Ukraine have

brought renewed attention to policies that can reduce home energy costs. Our findings

highlight the health benefits of such policies. While price interventions can distort allocative

efficiency, our estimates suggest the health gains from these policies can be large, particularly

for low-income households.
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Figure 1: Share of households using natural gas for heating, by US county

Notes: The figure shows the proportion of occupied housing units in each county that report using natural
gas as their main heating source. Data are from the 2000 US Census.
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Figure 2: US natural gas and electricity prices, 2000 to 2010
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Notes: The data series depicted with lines are the national prices of natural gas and electricity, normalized
by their respective averages between 2000 and 2010 (left axis). National shale gas production in trillion
cubic feet is shown as the bar chart (right axis). Data are from the US Energy Information Administration.
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Table 1: Effect of heating price on energy use and energy spending

Dependent variable:

Log of average
electricity and gas price

Log of total
energy consumption

Log of total
monthly energy bill

Total monthly
energy bill

(1) (2) (3) (4) (5) (6) (7) (8)

Heating price proxy 0.351∗∗∗ 0.361∗∗∗ -0.125∗∗∗ -0.0932∗∗ 0.270∗∗∗ 0.246∗∗∗ 57.4∗∗∗ 50.9∗∗∗

[0.0671] [0.0700] [0.0391] [0.0393] [0.0369] [0.0352] [7.33] [6.94]

Observations 2,695 2,695 2,695 2,695 21,665 21,665 21,665 21,665
Mean price/quantity 21.1 21.1 22.1 22.1 220.7 220.7 220.7 220.7
Basic fixed effects Yes Yes Yes Yes Yes Yes Yes Yes
All other controls No Yes No Yes No Yes No Yes
Implied elasticity -0.36 -0.26

Notes: Standard errors clustered by state in brackets. Asterisks denote significance: * p < .10, ** p < .05, *** p < .01. Columns 1 to
4: The sample comprises state-year-months in the contiguous US for winter months (November–March) between 2000 and 2010. Outcomes
are constructed from EIA data. Columns 5 to 8: The sample comprises county-years in the contiguous US, aggregated and crosswalked from
microdata in the 2000 Census and the ACS PUMS data between 2005 and 2010. Heating price proxy is ShareGasjt × Log(RelPricejt), where
ShareGasjt is the state-year (columns 1 to 4) or county-year (columns 5 to 8) proportion of occupied housing units with natural gas as their main
heating source, and RelPricejt is the ratio of the citygate price of natural gas to the residential price of electricity. Prices are state-month prices
averaged over the three- and four-month lag in columns 1 to 4, and state-year prices in columns 5 to 8. Heating price proxy is instrumented using
ShareGasj,2000 × Log(RelPriceUS,t), i.e. the interaction of ShareGasjt in 2000 with the US-level Log(RelPricejt). Average electricity and gas price
is the state’s consumption-weighted average of the residential prices of electricity and gas, in dollars per million British Thermal Units (BTUs).
Total energy consumption is the state’s total delivery of natural gas and electricity to residential consumers, in trillion BTUs. Total monthly
energy bill is the mean monthly bill from electricity, gas and other fuels in the county. Basic fixed effects are state and year-month fixed effects for
columns 1 to 4, and county and year fixed effects for columns 5 to 8. All other controls are the interactions of log(RelPriceUS,t) with the log state
or county household income in 1999 (25th, 50th, and 75th percentiles) and the share of people aged 70 and above in 2000, the state housing price
index, the unemployment rate, the state’s manufacturing sector share of total employee compensation, HDD, a quadratic in absolute humidity,
the air quality indices (AQIs) for PM2.5, PM10, and NO2, and the AQI for NO2 squared. Implied elasticity is the ratio of the coefficient reported
in that column to the corresponding coefficient from the first two columns. Monetary variables are in constant 2016 US dollars.
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Table 2: Effect of heating price on mortality from all-cause and EWM causes of death

Dependent variable: Log of mortality rate

All
causes

All
EWM
causes

Non-
EWM
causes

Group A
EWM:
Non-
viral,
non-

respiratory
infections

Group G
EWM:
Neuro-
logical
diseases

Group I
EWM:
Circula-
tory

system
diseases

Group J
EWM:
Respira-
tory

system
diseases

All
EWM
causes

All
EWM
causes

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Heating price proxy 0.032∗∗ 0.059∗∗∗ 0.0033 0.021 0.021 0.054∗∗ 0.099∗∗∗ -0.015 0.090∗∗

[0.014] [0.017] [0.021] [0.025] [0.029] [0.020] [0.020] [0.015] [0.037]
Heating price proxy × Winter 0.073∗∗∗

[0.019]
Heating price proxy × HDD 0.090∗∗∗

[0.032]

Observations 153,296 152,927 151,113 108,659 110,742 151,589 148,583 366,668 366,668
Mean mortality rate 929.5 577.6 358.4 74.16 74.01 371.8 259.8 527.8 527.8
Months used Winter Winter Winter Winter Winter Winter Winter All All

Notes: Standard errors clustered by state in brackets. Asterisks denote significance: * p < .10, ** p < .05, *** p < .01. The sample comprises
county-year-months in the contiguous US between 2000 and 2010. In columns 1 to 7, the sample is restricted to winter months (November–March).
Mortality rates are age-adjusted mortality rates expressed as annual deaths per 100,000 population; see data appendix for further details. Heating
price proxy is ShareGasjt × Log(RelPricejt), where ShareGasjt is the county-year proportion of occupied housing units with natural gas as their
main heating source, and RelPricejt is the ratio of the state-month citygate price of natural gas, averaged over the three- and four-month lag, to
the corresponding residential price of electricity. Winter is a binary variable that equals one in winter months (November to March). HDD is
the number of heating degree-days in the county for the month, based on thresholds of 65°F, in units of °F-days divided by 1000, and scaled to
a 30-day month. Heating price proxy and its interaction with Winter/HDD are instrumented using ShareGasj,2000 × Log(RelPriceUS,t) and its
interaction with Winter/HDD. Columns 1 to 7: All columns control for county and year-month fixed effects, the interactions of log(RelPriceUS,t)
with the log county household income in 1999 (25th, 50th, and 75th percentiles) and the share of people aged 70 and above in 2000, the state
housing price index, the unemployment rate, the state’s manufacturing sector share of total employee compensation, HDD, a quadratic in absolute
humidity, the AQIs for PM2.5, PM10, and NO2, and the AQI for NO2 squared. Columns 8 and 9: All columns control for the above set plus the
following: all possible two-way interactions between ShareGasj,2000, log(RelPriceUS,t), and Winter/HDD ; and the two- and three-way interactions
among log(RelPriceUS,t), Winter/HDD, and each of the log county household income in 1999 (25th, 50th, and 75th percentiles) and the share of
people aged 70 and above in 2000. Column 9 also includes the interaction of the average county HDD in winter months with log(RelPriceUS,t); and
the three-way interactions of the average county HDD in winter months, log(RelPriceUS,t), and each of ShareGasj,2000, the log county household
income in 1999, and the share of people aged 70 and above in 2000.

25



Table 3: Heterogeneous effects on mortality

Dependent variable: Log of all-EWM-causes mortality rate
Trait is:

Below-
median
county
income

Proportion
below
150% of
poverty
line

Above-
median
propor-
tion
below
150% of
poverty
line

No high
school
degree

Male Black

(1) (2) (3) (4) (5) (6)

Heating price proxy × Trait 0.021 0.36∗∗ 0.057∗∗ 0.033 0.013 0.013
[0.032] [0.17] [0.026] [0.039] [0.026] [0.044]

Heating price proxy 0.049∗∗∗ -0.025 0.038∗∗ 0.027 0.058∗∗∗ 0.053∗∗∗

[0.016] [0.037] [0.016] [0.045] [0.017] [0.017]

Observations 152,927 152,927 152,927 284,700 300,311 218,275
Mean mortality rate 577.6 577.6 577.6 999.4 605.3 739.4
Implied effect for Trait = 1 0.07∗∗ 0.33∗∗ 0.10∗∗∗ 0.06 0.07∗∗∗ 0.07

[0.03] [0.14] [0.03] [0.05] [0.02] [0.04]

Notes: Standard errors clustered by state in brackets. Asterisks denote significance: * p < .10, **
p < .05, *** p < .01. For columns 1 to 3, the sample comprises county-year-months in the con-
tiguous US for winter months (November–March) between 2000 and 2010. For columns 4, 5, and 6,
the sample comprises county-year-months-education, county-year-months-sex, and county-year-months-
race groups, respectively, for winter months. Mortality rates are age-adjusted mortality rates expressed
as annual deaths per 100,000 population; see data appendix for further details. Heating price proxy
is ShareGasjt × Log(RelPricejt), where ShareGasjt is the county-year proportion of occupied housing
units with natural gas as their main heating source, and RelPricejt is the log of the ratio of the state-
month citygate price of natural gas, averaged over the three- and four-month lag, to the corresponding
residential price of electricity. Column 1: Trait is an indicator variable that equals one if the county’s
median household income is below the median of all counties in the sample in 1999. Column 2: Trait
is the proportion of households in the county with income in 1999 below 150 percent of the poverty
threshold. Column 3: Trait is an indicator variable that equals one if the proportion from column 2 is
above the median of all counties in the sample. Column 4: Trait is an indicator variable that equals
one for the subgroup that did not complete high school. Column 5: Trait is an indicator variable that
equals one for the male population. Column 6: Trait is an indicator variable that equals one for the
Black population; non-Black and non-White populations are excluded from the sample. Heating price
proxy and its interaction with Trait are instrumented using ShareGasj,2000 × Log(RelPriceUS,t) and
its interaction with Trait. All columns include all fixed effects and control variables from column 2 of
Table 2, the main effect for Trait, and the interaction of each fixed effect or control variable with Trait.
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A Appendix figures and tables

Appendix Figure A1: Heating degree-days and monthly mortality in the US
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Notes: Average heating degree-days (HDD) and average age-adjusted mortality rates across US counties
(excluding Hawaii and Alaska) between 2000 and 2010 plotted by month. Average HDD is computed using
temperature data from the PRISM Climate Group, and is based on a threshold of 65°F, in units of °F-days
divided by 1000, and scaled to a 30-day month. Average age-adjusted mortality rates are computed using
the NCHS mortality data and expressed per 100,000 population on an annualized basis. Months we define
as winter in our analysis (November–March) are shaded in the background.
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Appendix Figure A2: Seasonality in mortality for EWM and non-EWM causes
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Notes: Average age-adjusted mortality rates across US counties (excluding Hawaii and Alaska) between
2000 and 2010, broken down by sex and EWM versus other causes. EWM causes are those that exhibit a
strong pattern of higher mortality in winter than the rest of the year, as described in the text; see data
appendix for further details. We normalize each series by its value in August (the month with the lowest
all-cause mortality rate). Age-adjusted mortality rates are computed using the NCHS mortality data.
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Appendix Figure A3: Binned scatterplot of the relationship between EWM mortality and
the heating price
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Notes: The sample comprises county-year-months in the contiguous US for winter months
(November–March) between 2000 and 2010. Mortality rates are age-adjusted mortality rates expressed as
annual deaths per 100,000 population; see data appendix for further details. ShareGasj,2000 ×
Log(RelPriceUS,t) is the instrument used in Table 2, where ShareGasj,2000 is the proportion of occupied
housing units in the county in 2000 with natural gas as their main heating source, and RelPriceUS,t is the
ratio of the monthly citygate price of natural gas in the US, averaged over the three- and four-month lag,
to the corresponding residential price of electricity. All fixed effects and control variables from Table 2,
column 2 are partialled out before plotting.
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Appendix Table A1: Regression of ShareGasjt on log(RelPricejt)

Dependent variable: ShareGas

0 lags
(contem-
porane-
ous)

1 lag 2 lags 3 lags 4 lags 5 lags

(1) (2) (3) (4) (5) (6)

Log(RelPrice) 0.016 0.0023 -0.0097 -0.0071 -0.010 -0.016
[0.013] [0.014] [0.013] [0.013] [0.012] [0.012]

Observations 539 539 539 539 539 539

Notes: Standard errors clustered by state in brackets. Asterisks denote significance:
* p < .10, ** p < .05, *** p < .01. The sample comprises state-years in the contiguous
US between 2000 and 2010. The dependent variable, ShareGas is the proportion of
occupied housing units in the state with natural gas as their main heating source, ag-
gregated from Census and ACS microdata to the state-year level. The main regressor,
Log(RelPrice), is the log of the ratio of the state-year citygate price of natural gas to
residential price of electricity at the specified lag. All columns include state and year
fixed effects.
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Appendix Table A2: Relationship between state-level RelPrice and unemployment rate

Dependent variable:

Log(RelPricejt) Log(RelPricejt)
∆ Log(RelPricejt),

2005–2010
(1) (2) (3)

Unemployment rate -0.014 -0.0040
[0.011] [0.0091]

∆ Unemployment rate, 2005–2010 -0.0011
[0.016]

Sample years 2000–2010 2005–2010 Cross-sectional
Observations 6336 3456 48
Implied 2005–2010 log point change in RelPrice -5.6 -1.5 -0.4

Percentage of observed RelPrice decrease (%) 10.4 2.9 0.8

Notes: Standard errors clustered by state in brackets. Asterisks denote significance: * p < .10, ** p < .05, ***
p < .01. The sample comprises state-year-months in the contiguous US between 2000 and 2010 in column 1, state-
year-months between 2005 and 2010 in column 2, and states in column 3. Log(RelPrice) is the log of the ratio of the
state’s monthly citygate price of natural gas to the state’s monthly residential price of electricity in columns 1 and
2; it is similarly defined in column 3 except based on annual prices. ∆ Log(RelPrice) or ∆ unemployment rate is
the change in the variable between the two years specified, i.e. 2005 to 2010. The unemployment rate is the state’s
monthly (columns 1 and 2) or annual (column 3) unemployment rate. Implied 2005 to 2010 log point change in
RelPrice is 100 times the coefficient times the change from 2005 to 2010 in the average unemployment rate. The
average unemployment rates among all states and months in 2005 and 2010 are 4.9% and 8.8% respectively. In the
next row, we report this percentage divided by the actual decrease in national RelPrice of 54 log points. Columns
1 and 2 include state and year-month fixed effects. No additional control variables are included in column 3.
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Appendix Table A3: Causes of death exhibiting high excess winter mortality

Cause of death (ICD-10 codes) Mean monthly
mortality rate

Level coefficient Log coefficient

Septicemia (A40-A41) 0.95 0.14 0.14
Parkinson’s disease (G20-G21) 0.53 0.08 0.16
Alzheimer’s disease (G30) 1.92 0.36 0.18
Acute myocardial infarction (I21-I22) 4.34 0.62 0.14
All other forms of chronic ischemic heart disease (I20, I25.1-I25.9) 6.32 0.80 0.12
Heart failure (I50) 1.61 0.21 0.13
Cerebrovascular diseases (I60-I69) 4.12 0.52 0.12
Atherosclerosis (I70) 0.30 0.04 0.14
Influenza (J09-J11) 0.04 0.06 2.21
Pneumonia (J12-J18) 1.63 0.58 0.34
Emphysema (J43) 0.38 0.08 0.21
Other chronic lower respiratory diseases (J44, J47) 3.11 0.63 0.20
Pneumonitis due to solids and liquids (J69) 0.47 0.09 0.18
Other diseases of respiratory system (J00-J06, J30-J39, J67, J70-J98) 0.77 0.11 0.14
All other diseases (Residual)* 6.17 0.80 0.13
Accidental exposure to smoke, fire and flames (X00-X09)* 0.09 0.05 0.56

Notes: Mortality rates are expressed per 100,000 population and computed using the NCHS mortality data. The 75th percentile of level and log
coefficient are 0.02 and 0.12, respectively. We remove All other diseases and Accidental exposure to smoke, fire and flames (marked with *) when we
analyze mortality from high-EWM causes. See the data appendix for further details on the selection of high-EWM causes of deaths.
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Appendix Table A4: Effect of heating price on energy consumption at various lags of
RelPrice

Dependent variable: Log of total energy consumption

0 lags
(contem-

poraneous)
1 lag 2 lags 3 lags 4 lags 5 lags 6 lags

(1) (2) (3) (4) (5) (6) (7)

Heating price proxy -0.047 -0.024 -0.018 -0.069∗ -0.11∗∗ -0.12∗∗∗ -0.12∗∗∗

[0.038] [0.037] [0.037] [0.037] [0.043] [0.040] [0.039]

Observations 2,695 2,695 2,695 2,695 2,695 2,694 2,694
Mean quantity 22.1 22.1 22.1 22.1 22.1 22.1 22.1

Notes: Standard errors clustered by state in brackets. Asterisks denote significance: * p < .10, **
p < .05, *** p < .01. The sample comprises state-year-months in the contiguous US for winter months
(November–March) between 2000 and 2010. Total energy consumption is the state’s total delivery of
natural gas and electricity to residential consumers, in trillion BTUs. Heating price proxy is ShareGasjt ×
Log(RelPricejt), where ShareGasjt is the state-year proportion of occupied housing units with natural gas
as their main heating source, and RelPricejt is the ratio of the monthly citygate price of natural gas in the
state-month, lagged by the number of months indicated in each column, to the corresponding residential
price of electricity. Heating price proxy is instrumented using ShareGasj,2000 × Log(RelPriceUS,t), where
RelPriceUS,t is similarly lagged by the number of months indicated in each column. Monetary variables
are in constant 2016 US dollars. All columns include all fixed effects and control variables from column 4
of Table 1.
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Appendix Table A5: Winter/non-winter specification estimates of effects on average energy
price and consumption

Dependent variable:
Log of average

electricity and gas price

Dependent variable:
Log of total

energy consumption

(1) (2) (3) (4)

Heating price proxy × Winter 0.32∗∗∗ -0.098∗∗

[0.045] [0.048]
Heating price proxy × HDD 0.31∗∗∗ -0.059

[0.070] [0.076]

Observations 6,468 6,468 6,468 6,468
Mean price/quantity 25.5 25.5 16.0 16.0
Implied elasticity -0.31 -0.19

Notes: Standard errors clustered by state in brackets. Asterisks denote significance: * p < .10,
** p < .05, *** p < .01. The sample comprises state-year-months in the contiguous US between
2000 and 2010. Average electricity and gas price is the state’s consumption-weighted average
of the residential prices of electricity and gas, in dollars per million BTUs. Total energy
consumption is the state’s total delivery of natural gas and electricity to residential consumers,
in trillion BTUs. Heating price proxy is ShareGasjt × Log(RelPricejt), where ShareGasjt is
the state-year proportion of occupied housing units with natural gas as their main heating
source, and RelPricejt is the ratio of the state-month citygate price of natural gas, averaged
over the three- and four-month lag, to the corresponding residential price of electricity. Winter
is a binary variable that equals one in winter months (November to March). HDD is the
number of heating degree-days in the county for the month, based on a threshold of 65°F, in
units of °F-days divided by 1000, and scaled to a 30-day month. Heating price proxy and its
interaction with Winter/HDD are instrumented using ShareGasj,2000 × Log(RelPriceUS,t) and
its interaction with Winter/HDD. Monetary variables are in constant 2016 US dollars. Implied
elasticity is the ratio of the coefficient reported in that column to the corresponding coefficient
from the first two columns. All columns include fixed effects and control variables analogous
to those used in columns 8 and 9 of Table 2.
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Appendix Table A6: Effect of heating price on non-energy expenditures in the CEX

Dependent variable: IHS of expenditure on:

Food &
alcohol

Strictly
non-durable

Non-durable
All

non-utilities
Health

(1) (2) (3) (4) (5)

Heating price proxy -0.046 0.0099 0.022 0.011 0.36∗

[0.062] [0.051] [0.047] [0.048] [0.20]

Observations 53,938 53,894 53,921 53,935 53,691
Mean expenditure 595.2 973.2 1,364.8 2,751.1 203.5

Notes: Standard errors clustered by state in brackets. Asterisks denote significance: * p < .10,
** p < .05, *** p < .01. The sample comprises households on the contiguous US interviewed
between February and April and between 2000 and 2010 in the CEX Interview Survey. Expendi-
tures are average monthly expenditures for the three months prior to interview, in constant 2016
dollars. IHS refers to the inverse hyperbolic sine transformation. “Strictly non-durable” expen-
ditures includes food and alcohol, and CEX categories like household operations, gas, personal
care, and tobacco. “Non-durable expenditures” additionally includes semi-durable categories
like apparel, health and reading materials. “All non-utilities expenditures” also includes durable
expenditures such as home furnishings, entertainment equipment, and auto purchases. Utilities
expenditures are excluded from all categories. Heating price proxy is the state-level analog of
that in Table 2, with an additional averaging over the three months prior to the interview to
match the interview structure of the data. The specification uses the instrument, fixed effects,
and control variables from column 2 of Table 2, with the same additional averaging to account
for the interview structure of the data. The specification additionally includes the following
household-level controls: family size, indicators for any household member aged over 64 or under
18, whether the reference person does not have a high school degree, the age of the reference
person, indicators for race categories (Black, non-Black Hispanic, and others), and log household
income.
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Appendix Table A7: First stage of instrumental variables regression

Dependent variable:
ShareGasjt × Log(RelPricejt)

(heating price proxy)
(1) (2)

ShareGasj,2000 × Log(RelPriceUS,t) 1.07∗∗∗ 1.06∗∗∗

[0.059] [0.050]

Observations 153,340 153,340
F statistic on instrument 329.8 450.1
Basic fixed effects No Yes
All other controls Yes Yes

Notes: Standard errors clustered by state in brackets. Asterisks denote
significance: * p < .10, ** p < .05, *** p < .01. The sample comprises
county-year-months in the contiguous US for winter months (November–
March) between 2000 and 2010. ShareGasjt × Log(RelPricejt) is the
heating price proxy used in our main specification, where ShareGasjt is
the county-year proportion of occupied housing units with natural gas as
their main heating source, and RelPricejt is the ratio of the state-month
citygate price of natural gas, averaged over the three- and four-month
lag, to the corresponding residential price of electricity. ShareGasj,2000 ×
Log(RelPriceUS,t) is the instrument used in our main specification, where
ShareGasj,2000 is the proportion of occupied housing units in the county
in 2000 with natural gas as their main heating source, and RelPriceUS,t is
the ratio of the monthly citygate price of natural gas in the US, averaged
over the three- and four-month lag, to the corresponding residential price
of electricity. Basic fixed effects are county and year-month fixed effects.
All other controls are the interactions of log(RelPrice) with the log county
household income in 1999 (25th, 50th, and 75th percentiles) and the share
of people aged 70 and above in 2000, the state housing price index, the
unemployment rate, the state’s manufacturing sector share of total em-
ployee compensation, HDD, a quadratic in absolute humidity, the AQIs
for PM2.5, PM10, and NO2, and the AQI for NO2 squared.
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Appendix Table A8: Effect of heating price on mortality using mortality rate in levels

Dependent variable: Mortality rate

All
causes

All
EWM
causes

Non-
EWM
causes

Group A
EWM:
Non-
viral,
non-

respiratory
infections

Group G
EWM:
Neuro-
logical
diseases

Group I
EWM:
Circula-
tory

system
diseases

Group J
EWM:
Respira-
tory

system
diseases

All
EWM
causes

All
EWM
causes

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Heating price proxy 33.3∗∗∗ 31.8∗∗∗ 1.53 0.31 -1.88 17.8∗∗ 22.7∗∗∗ -2.96 34.9∗

[12.4] [9.66] [7.24] [2.67] [2.37] [7.21] [5.17] [6.28] [19.4]
Heating price proxy × Winter 34.0∗∗∗

[9.81]
Heating price proxy × HDD 38.7∗∗

[15.8]

Observations 153,340 153,340 153,340 153,340 153,340 153,340 153,340 368,016 368,016
Mean mortality rate 929.2 576.0 353.2 52.55 53.45 367.5 251.7 525.9 525.9
Months used Winter Winter Winter Winter Winter Winter Winter All All

Notes: Standard errors clustered by state in brackets. Asterisks denote significance: * p < .10, ** p < .05, *** p < .01. The sample comprises
county-year-months in the contiguous US between 2000 and 2010. In columns 1 to 7, the sample is restricted to winter months (November–March).
Mortality rates are age-adjusted mortality rates expressed as annual deaths per 100,000 population; see data appendix for further details. Heating
price proxy is ShareGasjt × Log(RelPricejt), where ShareGasjt is the county-year proportion of occupied housing units with natural gas as their
main heating source, and RelPricejt is the ratio of the state-month citygate price of natural gas, averaged over the three- and four-month lag, to
the corresponding residential price of electricity. Winter is a binary variable that equals one in winter months (November to March). HDD is
the number of heating degree-days in the county for the month, based on thresholds of 65°F, in units of °F-days divided by 1000, and scaled to
a 30-day month. Heating price proxy and its interaction with Winter/HDD are instrumented using ShareGasj,2000 × Log(RelPriceUS,t) and its
interaction with Winter/HDD. Columns 1 to 7: All columns control for county and year-month fixed effects, the interactions of log(RelPriceUS,t)
with the log county household income in 1999 (25th, 50th, and 75th percentiles) and the share of people aged 70 and above in 2000, the state
housing price index, the unemployment rate, the state’s manufacturing sector share of total employee compensation, HDD, a quadratic in absolute
humidity, the AQIs for PM2.5, PM10, and NO2, and the AQI for NO2 squared. Columns 8 and 9: All columns control for the above set plus the
following: all possible two-way interactions between ShareGasj,2000, log(RelPriceUS,t), and Winter/HDD ; and the two- and three-way interactions
among log(RelPriceUS,t), Winter/HDD, and each of the log county household income in 1999 (25th, 50th, and 75th percentiles) and the share of
people aged 70 and above in 2000. Column 9 also includes the interaction of the average county HDD in winter months with log(RelPriceUS,t); and
the three-way interactions of the average county HDD in winter months, log(RelPriceUS,t), and each of ShareGasj,2000, the log county household
income in 1999, and the share of people aged 70 and above in 2000.
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Appendix Table A9: Effect of heating price on mortality, weighted by population in 2000

Dependent variable: Log of mortality rate

All
causes

All
EWM
causes

Non-
EWM
causes

Group A
EWM:
Non-
viral,
non-

respiratory
infections

Group G
EWM:
Neuro-
logical
diseases

Group I
EWM:
Circula-
tory

system
diseases

Group J
EWM:
Respira-
tory

system
diseases

All
EWM
causes

All
EWM
causes

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Heating price proxy 0.029∗∗∗ 0.046∗∗∗ 0.0091 0.0020 0.025 0.049∗∗∗ 0.055∗∗∗ 0.0054 0.036
[0.0087] [0.012] [0.010] [0.027] [0.043] [0.014] [0.018] [0.011] [0.023]

Heating price proxy × Winter 0.037∗∗∗

[0.011]
Heating price proxy × HDD 0.036∗

[0.021]

Observations 153,296 152,927 151,113 108,659 110,742 151,589 148,583 366,668 366,668
Mean mortality rate 864.2 527.3 337.5 58.11 52.46 330.9 229.2 483.2 483.2
Months used Winter Winter Winter Winter Winter Winter Winter All All

Notes: Standard errors clustered by state in brackets. Asterisks denote significance: * p < .10, ** p < .05, *** p < .01. The sample comprises
county-year-months in the contiguous US between 2000 and 2010. In columns 1 to 7, the sample is restricted to winter months (November–March).
Mortality rates are age-adjusted mortality rates expressed as annual deaths per 100,000 population; see data appendix for further details. Heating
price proxy is ShareGasjt × Log(RelPricejt), where ShareGasjt is the county-year proportion of occupied housing units with natural gas as their
main heating source, and RelPricejt is the ratio of the state-month citygate price of natural gas, averaged over the three- and four-month lag, to
the corresponding residential price of electricity. Winter is a binary variable that equals one in winter months (November to March). HDD is
the number of heating degree-days in the county for the month, based on thresholds of 65°F, in units of °F-days divided by 1000, and scaled to
a 30-day month. Heating price proxy and its interaction with Winter/HDD are instrumented using ShareGasj,2000 × Log(RelPriceUS,t) and its
interaction with Winter/HDD. Columns 1 to 7: All columns control for county and year-month fixed effects, the interactions of log(RelPriceUS,t)
with the log county household income in 1999 (25th, 50th, and 75th percentiles) and the share of people aged 70 and above in 2000, the state
housing price index, the unemployment rate, the state’s manufacturing sector share of total employee compensation, HDD, a quadratic in absolute
humidity, the AQIs for PM2.5, PM10, and NO2, and the AQI for NO2 squared. Columns 8 and 9: All columns control for the above set plus the
following: all possible two-way interactions between ShareGasj,2000, log(RelPriceUS,t), and Winter/HDD ; and the two- and three-way interactions
among log(RelPriceUS,t), Winter/HDD, and each of the log county household income in 1999 (25th, 50th, and 75th percentiles) and the share of
people aged 70 and above in 2000. Column 9 also includes the interaction of the average county HDD in winter months with log(RelPriceUS,t); and
the three-way interactions of the average county HDD in winter months, log(RelPriceUS,t), and each of ShareGasj,2000, the log county household
income in 1999, and the share of people aged 70 and above in 2000. All columns are weighted by the county population in 2000.
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Appendix Table A10: Effect of heating price on mortality, using only natural gas price variation

Dependent variable: Log of mortality rate

All
causes

All
EWM
causes

Non-
EWM
causes

Group A
EWM:
Non-
viral,
non-

respiratory
infections

Group G
EWM:
Neuro-
logical
diseases

Group I
EWM:
Circula-
tory

system
diseases

Group J
EWM:
Respira-
tory

system
diseases

All
EWM
causes

All
EWM
causes

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Heating price proxy 0.023 0.050∗∗∗ -0.0059 -0.00079 0.0069 0.041∗ 0.087∗∗∗ -0.017 0.069∗

[0.015] [0.018] [0.022] [0.022] [0.029] [0.021] [0.021] [0.015] [0.040]
Heating price proxy × Winter 0.068∗∗∗

[0.019]
Heating price proxy × HDD 0.066∗∗

[0.026]

Observations 153,296 152,927 151,113 108,659 110,742 151,589 148,583 366,668 366,668
Mean mortality rate 929.5 577.6 358.4 74.16 74.01 371.8 259.8 527.8 527.8
Months used Winter Winter Winter Winter Winter Winter Winter All All

Notes: Standard errors clustered by state in brackets. Asterisks denote significance: * p < .10, ** p < .05, *** p < .01. The sample comprises
county-year-months in the contiguous US between 2000 and 2010. In columns 1 to 7, the sample is restricted to winter months (November–March).
Mortality rates are age-adjusted mortality rates expressed as annual deaths per 100,000 population; see data appendix for further details. Heating
price proxy is ShareGasjt × Log(RelPricejt), where ShareGasjt is the county-year proportion of occupied housing units with natural gas as their main
heating source, and RelPricejt is the ratio of the state-month citygate price of natural gas, averaged over the three- and four-month lag (GasPricejt),
to the corresponding residential price of electricity (ElecPricejt). Winter is a binary variable that equals one in winter months (November to March).
HDD is the number of heating degree-days in the county for the month, based on thresholds of 65°F, in units of °F-days divided by 1000, and scaled
to a 30-day month. Heating price proxy and its interaction with Winter/HDD are instrumented using ShareGasj,2000 × Log(GasPriceUS,t) and its
interaction with Winter/HDD. Columns 1 to 7: All columns control for county and year-month fixed effects, ShareGasj,2000 × Log(ElecPriceUS,t),
the interactions of log(GasPriceUS,t) with the log county household income in 1999 (25th, 50th, and 75th percentiles) and the share of people aged
70 and above in 2000, the state housing price index, the unemployment rate, the state’s manufacturing sector share of total employee compensation,
HDD, a quadratic in absolute humidity, the AQIs for PM2.5, PM10, and NO2, and the AQI for NO2 squared. Columns 8 and 9: All columns control
for the above set plus the following: ShareGasj,2000 × Log(ElecPriceUS,t); ShareGasj,2000 × Log(ElecPriceUS,t) × Winter/HDD ; all possible two-
way interactions between ShareGasj,2000, log(GasPriceUS,t), and Winter/HDD ; and the two- and three-way interactions among log(GasPriceUS,t),
Winter/HDD, and each of the log county household income in 1999 (25th, 50th, and 75th percentiles) and the share of people aged 70 and above in
2000. Column 9 also includes the interaction of the average county HDD in winter months with log(GasPriceUS,t); and the three-way interactions
of the average county HDD in winter months, log(GasPriceUS,t), and each of ShareGasj,2000, the log county household income in 1999, and the
share of people aged 70 and above in 2000. All columns are weighted by the county population in 2000.
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Appendix Table A11: Effect of heating price on mortality, by specific cause of death

Dependent variable: Log of specified disease mortality rate

Septicemia 0.021 Atherosclerosis 0.053
[0.025] [0.044]
{74.2} {45.9}

Parkinson’s disease 0.044 Influenza -0.14
[0.026] [0.12]
{32.2} {24.4}

Alzheimer’s disease 0.030 Pneumonia 0.10∗∗∗

[0.031] [0.031]
{63.2} {104.9}

Acute myocardial infarction 0.11∗∗∗ Emphysema 0.13∗∗∗

[0.031] [0.044]
{107.3} {29.7}

Chronic ischemic heart
disease

0.080∗∗∗ Other chronic lower
respiratory diseases

0.11∗∗∗

[0.027] [0.023]
{158.0} {114.2}

Heart failure 0.055∗∗ Pneumonitis (solids and
liquids)

0.053
[0.023] [0.042]
{137.4} {44.4}

Cerebrovascular diseases 0.082∗∗ Other respiratory diseases 0.053∗

[0.031] [0.028]
{114.4} {107.4}

Notes: Each cell shows the result from a separate regression, and reports the coefficient on
Heating price proxy, the corresponding standard error clustered by state in square brackets, and
the mean mortality rate of the specified cause in curly brackets. Asterisks denote significance: *
p < .10, ** p < .05, *** p < .01. The sample comprises county-year-months in the contiguous US
for winter months (November–March) between 2000 and 2010. Mortality rates are age-adjusted
mortality rates expressed as annual deaths per 100,000 population; see data appendix for further
details. Heating price proxy is ShareGasjt × Log(RelPricejt), where ShareGasjt is the county-
year proportion of occupied housing units with natural gas as their main heating source, and
RelPricejt is the ratio of the state-month citygate price of natural gas, averaged over the three-
and four-month lag, to the corresponding residential price of electricity. Heating price proxy is
instrumented using ShareGasj,2000 × Log(RelPriceUS,t). All columns include all fixed effects and
control variables from column 2 of Table 2.
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Appendix Table A12: Dynamic effects of heating price on mortality

Dependent variable: Log of all-EWM-causes mortality rate

(1) (2) (3) (4) (5) (6) (7)

Contemporaneous reduced form effect 0.062∗∗∗ 0.050 0.12∗∗ 0.047 0.049 0.034 0.048
[0.019] [0.051] [0.051] [0.046] [0.051] [0.055] [0.052]

Effect on mortality 1 month after 0.0019 -0.16∗∗ -0.027 -0.035 -0.0011 -0.00094
[0.050] [0.078] [0.082] [0.086] [0.098] [0.091]

Effect on mortality 2 months after 0.11∗ -0.058 -0.026 -0.055 -0.093
[0.059] [0.089] [0.10] [0.11] [0.100]

Effect on mortality 3 months after 0.13∗∗ 0.052 0.12 0.18∗

[0.057] [0.097] [0.11] [0.10]
Effect on mortality 4 months after 0.014 -0.11 -0.18

[0.049] [0.099] [0.11]
Effect on mortality 5 months after 0.097∗ 0.16

[0.057] [0.099]
Effect on mortality 6 months after -0.036

[0.053]

Observations 152,927 183,510 214,043 244,552 275,071 305,602 336,113
Cumulative effect 0.06∗∗∗ 0.05∗∗ 0.07∗∗∗ 0.09∗∗∗ 0.05∗ 0.08∗∗ 0.08∗

[0.02] [0.02] [0.03] [0.03] [0.03] [0.04] [0.04]

Notes: Standard errors clustered by state in brackets. Asterisks denote significance: * p < .10, ** p < .05, *** p < .01.
Column 1 shows the reduced-form analog of our main estimates, and subsequent columns show dynamic reduced-form
effects. The sample comprises county-year-months in the contiguous US between 2000 and 2010. The sample is restricted
to months November to March in column 1, November to April in column 2, November to May in column 3, November
to June in column 4, November to July in column 5, November to August in column 6, and November to September
in column 7. The specification used is log(mjt) =

∑K
k=0 βkShareGasj,2000 × log(RelPriceUS,t−k) × MonthofEffectk +

γkShareGasj,2000 × log(RelPriceUS,t−k) + Controls + ϵjt, where MonthofEffect0 takes on a value of one in the months
of November to March; MonthofEffect1 takes on a value of one in the months of December to April; MonthofEffect2 takes
on a value of one in the months of January to May; MonthofEffect3 takes on a value of one in the months of February to
June; MonthofEffect4 takes on a value of one in the months of March to July; MonthofEffect5 takes on a value of one in
the months of April to August; MonthofEffect6 takes on a value of one in the months of May to September; and Controls
are all fixed effects and control variables from column 2 of Table 2 and are fully interacted with the MonthofEffectk
dummies. K, the total number of months after the contemporaneous effect, is 0 in column 1, 1 in column 2, and so on.
The coefficients shown are βk’s, the effect of the winter price of heating on winter mortality k months after winter, after
accounting for intertemporal correlation (since we estimate the βk’s jointly), and after removing the effect on mortality
in irrelevant months through MonthofEffectk dummies (e.g., April is not a winter month, so is not relevant for the
contemporaneous effect). Cumulative effect is the sum of the βk’s. All other definitions not noted above are as in column
2 of Table 2.
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Appendix Table A13: Winter/non-winter specification mortality estimates

Dependent variable: Log of mortality rate

All causes
All EWM
causes

Group I
EWM:
Circula-
tory

system
diseases

Group J
EWM:
Respira-
tory

system
diseases

Non-
EWM
causes

(1) (2) (3) (4) (5)

Panel A: Winter/non-winter specification using winter.

Heating price proxy -0.0088 -0.015 0.0082 -0.0060 0.0013
[0.0096] [0.015] [0.016] [0.020] [0.013]

Heating price proxy × Winter 0.039∗∗ 0.073∗∗∗ 0.043∗∗ 0.10∗∗∗ -0.00089
[0.015] [0.019] [0.019] [0.027] [0.022]

Panel B: Winter/non-winter specification using HDD.

Heating price proxy 0.054∗ 0.090∗∗ 0.095∗∗ 0.088∗ 0.035
[0.028] [0.037] [0.036] [0.046] [0.035]

Heating price proxy × HDD 0.043∗ 0.090∗∗∗ 0.065∗ 0.10∗∗ -0.0055
[0.024] [0.032] [0.034] [0.039] [0.029]

Panel C: Without controlling in parallel for average winter HDD.

Heating price proxy -0.0038 -0.0072 0.014 0.0042 0.0045
[0.010] [0.018] [0.020] [0.021] [0.015]

Heating price proxy × HDD 0.033∗ 0.058∗∗ 0.033 0.074∗∗ 0.0040
[0.018] [0.027] [0.030] [0.034] [0.021]

Observations 367,905 366,668 362,930 353,692 362,545
Mean mortality rate 872.6 527.8 343.5 232.7 351.7

Notes: Standard errors clustered by state in brackets. Asterisks denote significance: * p < .10, **
p < .05, *** p < .01. The sample comprises county-year-months in the contiguous US between 2000
and 2010. Mortality rates are age-adjusted mortality rates expressed as annual deaths per 100,000
population; see data appendix for further details. Heating price proxy is ShareGasjt × Log(RelPricejt),
where ShareGasjt is the county-year proportion of occupied housing units with natural gas as their main
heating source, and RelPricejt is the ratio of the state-month citygate price of natural gas, averaged over
the three- and four-month lag, to the corresponding residential price of electricity. Winter is a binary
variable that equals one in winter months (November to March). HDD is the number of heating degree-
days in the county for the month, based on thresholds of 65°F, in units of °F-days divided by 1000, and
scaled to a 30-day month. Heating price proxy and its interaction with Winter/HDD are instrumented
using ShareGasj,2000 × Log(RelPriceUS,t) and its interaction with Winter/HDD. All columns in panels
A and B include the fixed effects and control variables from columns 8 and 9 respectively of Table 2.
Panel C excludes from this set of control variables the two-way and three-way interactions based on the
county’s average HDD in winter months.
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Appendix Table A14: Effect of heating price on mortality: Robustness checks

Dependent variable: Log of all-EWM-
causes mortality rate

Baseline
specification

Winter/non-winter
specification using

winter

Winter/non-winter
specification using

HDD
(1) (2) (3)

1 Preferred specification 0.059∗∗∗ 0.073∗∗∗ 0.090∗∗∗

[0.017] [0.019] [0.032]

2 Winter defined as December to March 0.050∗∗ 0.065∗∗∗ n/a
[0.019] [0.020]

3 Winter defined as December to February 0.052∗∗ 0.074∗∗∗ n/a
[0.024] [0.027]

4 Using previous non-winter as comparison group n/a 0.093∗∗∗ 0.090∗∗

[0.024] [0.036]

5 Use residential gas price, averaged over 2nd and 3rd lags 0.054∗∗ 0.039 0.065
[0.025] [0.030] [0.048]

6 Use annual residential gas price 0.084∗∗ 0.095∗∗∗ 0.065
[0.033] [0.032] [0.052]

7 ShareGas defined as gas/(gas+ electricity) 0.045∗∗ 0.066∗∗∗ 0.082∗∗

[0.017] [0.020] [0.039]

8 Exclude states with share of gas or electricity < 75% 0.058∗∗∗ 0.072∗∗∗ 0.090∗∗

[0.019] [0.021] [0.043]

9 Exclude fracking states 0.055∗∗∗ 0.068∗∗∗ 0.097∗∗∗

[0.018] [0.018] [0.030]

10 Exclude Great Recession 0.040∗∗ 0.066∗∗∗ 0.083∗∗

[0.019] [0.019] [0.032]

11 Control for Log(LIHEAP per capita) 0.058∗∗∗ 0.073∗∗∗ 0.090∗∗∗

[0.018] [0.019] [0.032]

12 Control for all pollutants 0.057∗∗∗ 0.073∗∗∗ 0.091∗∗∗

[0.018] [0.019] [0.032]

13 Controls selected by double-selection post-Lasso method 0.059∗∗∗ 0.063∗∗∗ 0.074∗∗

[0.018] [0.019] [0.031]

14 State-level regression 0.090∗∗∗ 0.068∗∗∗ 0.100∗∗

[0.021] [0.020] [0.043]

15 State-level regression, using only within-division variation 0.097∗∗ 0.047 0.11
[0.040] [0.041] [0.093]

16 State-level regression, using annual price variation 0.097∗∗∗ 0.084∗∗∗ 0.095∗∗

[0.027] [0.025] [0.042]

Notes: Each cell shows the result from a separate regression, and reports the coefficient on Heating price proxy (column 1), Heating price proxy
× Winter (column 2), or Heating price proxy × HDD (column 3). The corresponding standard error, clustered by state, is shown in brackets.
Asterisks denote significance: * p < .10, ** p < .05, *** p < .01. Row 1 repeats results from our preferred specifications in columns 2, 8 and
9 of Table 2 respectively. Each row from 2-12 shows a change in specification compared to row 1. Row 2: The sample excludes November, and
in column 2 uses December to March as winter months. Row 3 : The sample excludes November and March, and in column 2 uses December to
February as winter months. Rows 2 and 3, column 3: The winter/non-winter specification using HDD is the same as in Table 2 since HDD is defined
independently of winter. Row 4: Winter/non-winter specification additionally includes ShareGasj,2000 × log(RelPriceUS,t) × HeatingY earFEt

and ShareGasj,2000 × HeatingY earFEt, where HeatingY earFEt are fixed effects for the months from April of one year to March of the next.
Row 5: RelPricejt is constructed as the ratio of the monthly residential price of natural gas in the state, averaged over the two- and three-month
lag, to the corresponding residential price of electricity. RelPriceUS,t is similarly constructed. Row 6: RelPricejt is constructed as the ratio of the
annual residential price of natural gas in the state to the corresponding residential price of electricity. RelPriceUS,t is similarly constructed. Row 7:
ShareGasjt is the number of occupied housing units in the county with natural gas as their main heating source as a proportion of the number with
natural gas and electricity. ShareGasj,2000 is similarly modified. Row 8: The sample excludes ME, VT, NH, CT, RI, MA, NY, PA, and DE, which
are the states in which the share of households using gas or electricity for heating is less than 75 %. Row 9: The sample excludes AR, LA, ND, OK,
PA, TX, and WV, which are the states with significant production of shale natural gas. Row 10: The sample excludes months between December
2007 and June 2009, inclusive. This is the period of the Great Recession as defined by the NBER Business Cycle Dating Committee. Row 11: The
specification includes the log of total LIHEAP assistance funds per capita in the state-fiscal year. Row 12: The specification includes the AQIs of
carbon monoxide, ozone, and sulfur dioxide as control variables. Row 13: The specification includes controls selected by the double-post-LASSO
method (Belloni et al. 2014) – see data appendix for further details. Row 14: Regressions are at the state-month level. Row 15: Regressions are at
the state-month level. Column 1 adds Census division fixed effects interacted with log(RelPrice). Columns 2 and 3 control for all possible two- and
three-way interactions among Census division, log(RelPrice), and Winter/HDD. Column 3 also includes all possible two- and three-way interactions
among Census division, log(RelPrice), and average state HDD. Row 16: Regressions are at the state-month level. RelPricejt is constructed as the
ratio of the annual citygate price of natural gas in the state to the corresponding residential price of electricity. RelPriceUS,t is similarly constructed.
All other definitions not noted are as in columns 2, 8 and 9 of Table 2 respectively.
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Appendix Table A15: Effect of heating price on mortality: Robustness to excluding control
variables

Dependent variable: Log of all-EWM-
causes mortality rate

Baseline
specification

Winter/non-
winter

specification
using winter

Winter/non-
winter

specification
using HDD

(1) (2) (3)

1 Preferred specification 0.059∗∗∗ 0.073∗∗∗ 0.090∗∗∗

[0.017] [0.019] [0.032]

2 Exclude housing price index 0.066∗∗∗ 0.074∗∗∗ 0.092∗∗∗

[0.016] [0.019] [0.032]

3 Exclude unemployment rate 0.058∗∗∗ 0.073∗∗∗ 0.090∗∗∗

[0.018] [0.019] [0.032]

4 Exclude manufacturing share 0.057∗∗∗ 0.073∗∗∗ 0.090∗∗∗

[0.017] [0.019] [0.032]

5 Exclude Log(Income) × Log(RelPrice) 0.041∗∗ 0.061∗∗∗ 0.071∗∗

[0.020] [0.019] [0.032]

6 Exclude Share70+ × Log(RelPrice) 0.059∗∗∗ 0.073∗∗∗ 0.090∗∗∗

[0.018] [0.019] [0.032]

7 Exclude all pollution and climate controls 0.055∗∗∗ 0.075∗∗∗ 0.094∗∗∗

[0.018] [0.019] [0.032]

8 Exclude Share70+ × Log(RelPrice) and

Log(Income) × Log(RelPrice)
0.045∗∗ 0.062∗∗∗ 0.071∗∗

[0.020] [0.019] [0.031]

9 Exclude unemployment rate, manufacturing
share, and housing price index

0.063∗∗∗ 0.073∗∗∗ 0.092∗∗∗

[0.016] [0.019] [0.032]

10 Including only basic controls 0.048∗∗ 0.065∗∗∗ 0.077∗∗

[0.021] [0.019] [0.031]

Notes: Each cell shows the result from a separate regression, and reports the coefficient on Heating
price proxy (column 1), Heating price proxy × Winter (column 2), or Heating price proxy × HDD
(column 3). The corresponding standard error, clustered by state, is shown in brackets. Asterisks
denote significance: * p < .10, ** p < .05, *** p < .01. Row 1 repeats results from our preferred
specifications in columns 2, 8 and 9 of Table 2 respectively. Each row from 2 to 10 shows a change in
specification compared to row 1. The change in specification is the exclusion of the control variable(s)
indicated in the first column and, where applicable, two-way and three-way interactions that include
that variable. HDD and variables involving average county HDD in winter months are retained in
row 7, column 3. Row 10 retains only county and year-month fixed effects (all columns), all possible
two-way interactions between ShareGasj,2000, log(RelPriceUS,t), and Winter/HDD (columns 2 and
3), and all possible two- and three-way interactions between ShareGasj,2000, log(RelPriceUS,t), and
the average county HDD in winter months (column 3). All other definitions not noted are as in
columns 2, 8 and 9 of Table 2 respectively.
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B Data appendix
Appendix Table B1 lists the data source for each of our outcome and independent

variables. The following sections provide further description of our data sources and the
construction of variables used in this paper.

B.1 Mortality rate

B.1.1 Data source
The data source for mortality is Vital Statistics records, specifically restricted-use “mor-

tality files with all county geographical information” obtained from the National Center for
Health Statistics (NCHS). These mortality files include a record for every death certificate
filed in the United States during the study period. Each record includes a single underlying
cause of death, up to twenty additional multiple causes, month of death, and demographic
data, including the deceased’s age, gender, race, Hispanic origin, education, county of res-
idence and county of death. The definition of the underlying cause of death follows that
of the World Health Organization (WHO): the disease or injury which initiated the train
of events leading directly to death, or the circumstances of the accident or violence which
produced the fatal injury. Causes of death are classified using the Tenth Revision of the
International Classification of Disease (ICD-10) during the 2000 to 2010 study period.

We compute mortality rates by county, classifying individuals by their county of res-
idence. We restrict our analyses to the contiguous US throughout the paper because our
data source for temperature excludes Hawaii and Alaska. We account for substantial county
boundary changes by aggregating counties to a larger stable unit.15 Specifically, we combine
Adams, Broomfield, Boulder, Jefferson, and Weld counties in Colorado; Prince George’s
and Montgomery in Maryland; Craven and Carteret in North Carolina; Franklin and Gulf
in Florida; Bedford and Bedford City in Virginia; Alleghany and Clifton Forge in Vir-
ginia; Augusta and Waynesboro in Virginia; Prince William and Manassas Park in Virginia;
Southampton and Franklin in Virginia; and York and Newport News in Virginia. We adopt
this aggregation throughout the paper.

In addition, when analyzing county-level data, we exclude counties whose population
aged 50 and over in 2000 are in the lowest decile of the full sample to reduce noise from
mortality rates of counties with small population and missing observations when we use the
logarithm of the mortality rate.

B.1.2 Calculating age-adjusted mortality rate
To calculate mortality rates, we use population data from the National Cancer Insti-

tutes’s Surveillance Epidemiology and End Results (Cancer-SEER) program. These data
give yearly county population estimates by age group, sex, race, and Hispanic origin.16 For
2005, we use the SEER’s adjusted set of population estimates that takes into account pop-
ulation shifts due to Hurricanes Katrina and Rita.

We use these population estimates to calculate both crude and age-adjusted mortality
rates, expressed per 100,000 population. The crude mortality rate at county-year-month level

15Information on substantial county boundary changes was taken from the Census Bureau’s website.
16We use vintage 2014 population estimates. The data and documentation are available at https://seer.

cancer.gov/popdata/.
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is the total number of deaths in that county in that year-month divided by its population
estimate in that year. The age-adjusted mortality rate is a weighted average of the crude
mortality rates across age categories, where the shares of each age category in the whole
US population are used as weights.17 We use the age distribution of US population in 2000
(the “US 2000 standard population”) published by SEER as weights in the calculation of
age-adjusted mortality rates. All mortality rates in the paper are expressed on an annual
basis obtained by multiplying the month-level mortality rates by (365/number of day in that
month).

B.1.3 Selection of causes of deaths
We use a data-driven approach to select causes of deaths that exhibit significant “excess

winter mortality” (EWM), or higher mortality in winter months than in other months.
We use the NCHS’s 113 Selected Causes of Death, which represent groupings of detailed

ICD-10 codes, as the mutually exclusive set of causes of death. To measure the degree of
EWM for each cause, we construct an observation for each month in the 2000 to 2010 period
(132 observations) and calculate the total deaths in the US, by cause, in that month. For
each cause separately, we run a regression of the number of deaths due to that cause (i.e., as
the underlying cause of death) on a Winter dummy, which equals 1 for November to March,
and year fixed effects. A similar set of regressions is estimated with the logarithm of deaths
as the outcome instead of the level. We then select causes whose Winter coefficient is in the
top quartile among all causes of deaths in both levels and logs (i.e., above 0.12 for logs and
0.02 for levels). We use both levels and logs of mortality because we want to select causes
that are both common and have a strong degree of excess winter mortality.

We exclude two causes from the data-driven list of excess winter mortality causes:
first, Accidental exposure to smoke, fire and flames, since accidental deaths that are not a
physiological result of exposure to cold differ from our focus, and second, All other diseases
(the residual category), since it is difficult to verify the mechanism for this “cause.” Appendix
Table A3 reports Winter coefficients in levels and logs and average monthly crude mortality
rate for each of the selected causes. The final selected list includes the following fourteen
causes of death, with their ICD-10 codes in brackets. These causes can be further grouped
into four broader cause groups, and generally match the causes highlighted in the health
literature as exacerbated by cold.18

� Group A: Non-viral, non-respiratory infections

17We use the following 19 age categories: under 1 year, 1-4 years, 5-9 years, ..., 80-84 years, and 85 years
and over.

18In cold temperature, blood vessels constrict to conserve heat and maintain body temperature, causing
higher cardiac workload and blood pressure (Castellani and Young 2016; Keatinge et al. 1984). These factors
along with changes in blood chemistry (including increased levels of fibrinogen, cholesterol, and platelet
aggregation) increase the risk of adverse cardiovascular events such as strokes, myocardial infarctions, and
pulmonary embolisms (Crawford et al. 2003; Liddell and Morris 2010; Woodhouse et al. 1994). Exposure to
cold temperature is also associated with increased incidence and severity of respiratory tract infections and
exacerbation of chronic respiratory diseases (Donaldson and Wedzicha 2014; Mourtzoukou and Falagas 2007).
The mechanisms linking cold weather to these respiratory problems include increased broncho-constriction
and compromised local respiratory defenses due to the inhalation of cold air (Donaldson and Wedzicha 2014;
Eccles 2002).
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– Septicemia (A40-A41)

� Group G: Neurological diseases

– Parkinson’s disease (G20-G21)

– Alzheimer’s disease (G30)

� Group I: Circulatory system diseases

– Acute myocardial infarction (I21-I22)

– All other forms of chronic ischemic heart disease (I20, I25.1-I25.9)

– Heart failure (I50)

– Cerebrovascular diseases (I60-I69)

– Atherosclerosis (I70)

� Group J: Respiratory system diseases

– Influenza (J09-J11)

– Pneumonia (J12-J18)

– Emphysema (J43)

– Other chronic lower respiratory diseases (J44, J47)

– Pneumonitis due to solids and liquids (J69)

– Other diseases of respiratory system (J00-J06, J30-J39, J67, J70-J98)

B.2 Life-years lost
Life-years lost (reported in Table C1) are calculated by combining our estimated mortal-

ity impacts with life expectancy estimates from the 2000 United States life tables published
by the National Center for Health Statistics. Using the life tables, we first compute the
residual life estimate for each of the three age groups (under 65, 65-74 and 75 and over) as
the weighted average of residual life estimate for each single age in the age group, where
the weights are the population proportion of each age in 2000.19 The winter life-years lost
impact for each age group is the product of the winter mortality impact and the residual
life estimate for the age group and is expressed in terms of annualized life-years lost per
100,000 population. We then take the weighted average across the three age groups, where
the weights are the population proportion of the age group, to obtain the winter life-years
lost impacts reported in Table C1.

To compare the value of life-years lost with the cost of heating incurred by households,
we first convert the winter life-years lost effect per 100,000 people into annual life-years per
household, using data on the total US population, proportion of the US population living in
households, and number of households in the US during our sample period 2000-2010.

19The residual life estimates for the three age categories are 48.5 years (under 65), 14.9 years (age 65-74),
and 8.5 years (age 75 and over).
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B.3 Home energy price and usage
All energy prices and consumption data come from monthly series published by the US

Energy Information Administration (EIA), available at the state and national level. The data
are based on samples of firms supplying natural gas or electricity to residential consumers,
and include some processing by EIA to account for non-response.20

The raw data express quantities in kilowatt-hours for electricity and cubic feet for nat-
ural gas. To allow comparison between energy types, we convert these quantities to British
Thermal Units (BTU). The conversion is straightforward for electricity. For natural gas, we
apply estimates of the heat content of natural gas delivered to residential consumers for each
state and year using the company-level data available in EIA’s Natural Gas Annual Respon-
dent Query System. For these estimates, we drop firms reporting heat content values of 0 or
above 2,500 BTU per cubic feet, and weight the reported heat content for each firm by the
volume of gas supplied to residential consumers.21 We also apply two manual edits. First,
five state-year observations are missing residential consumer heat content data for all firms;
we use the all-consumers heat content for these five observations. Second, the dominant firm
in Arkansas is missing heat content data for 2001; we use the average of its report in 2000
and 2002 instead.

Lastly, to aid interpretation of monetary units, we deflate all prices in this paper—
including the prices of natural gas and of electricity—to 2016 prices using the Bureau of
Labor Statistics’s (BLS) Consumer Price Index (CPI-U).

B.4 Home energy bills
For data on energy bills, we use Census 2000 5-Percent Public Use Microdata Sample

(PUMS) files combined with the 2005 to 2010 American Community Survey (ACS) PUMS
files (Ruggles et al. 2022).22 The Census/ACS data are available on an annual basis, and
the finest geographic identifier is the Public Use Microdata Area (PUMA). We aggregate
the microdata to obtain mean monthly energy bill for each PUMA for the year 2000 and
2005–2010. We then crosswalk from PUMA-level to county-level to facilitate discussion.23

The relevant question in the Census 2000 is “What are the annual costs of utilities
and fuels for this house, apartment, or mobile home?”, broken down into different types of
utilities and fuels. In the ACS, households are asked how much these bills cost them last
month (for electricity and gas) and last 12 months (for other fuels). We exclude households
whose energy bills are included in their rent or condominium fees.

B.5 Home heating sources (ShareGasjt, ShareGasj,2000)
ShareGasjt, the proportion of occupied housing units that indicate that gas is their

main heating source in each year, is computed using state- and county-level aggregate data
available in the 2000 Decennial Census Summary Files and the 2005–2009, 2006–2010, 2007–

20Response to the survey is required by law, and hence such non-response should not be a large problem.
21Heat contents typically range between 900 and 1,200 BTU per cubic feet.
22The data are self-reported but the reporting error is not likely to be correlated with the price of heating.

As such, these errors will likely reduce precision but not affect the interpretation of our estimated effect.
23We use the crosswalk from the Missouri Census Data Center, available at https://mcdc.missouri.

edu/applications/geocorr.html.
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2011, and 2008–2012 ACS 5-year estimates.24 The ACS estimates are matched to the mid-
point of the 5-year range. This procedure yields state- and county-year ShareGasjt for 2000,
2007, 2008, 2009, 2010. For the years 2001 to 2006 without Census or ACS data, since
ShareGasjt is highly correlated over time, we obtain ShareGasjt by interpolation.

The relevant Census or ACS question from which ShareGas is derived is “Which fuel
is used most for heating this house, apartment, or mobile home?” We include both utility
gas from underground pipes serving the neighborhoods and bottled, tank or LP gas in the
definition of “gas”.25 Our instrument is constructed using ShareGasj,2000, which is the value
of ShareGasjt in the year 2000.

B.6 Relative price of gas to electricity (RelPricejt, RelPriceUS,t)
Two other key variables in our analysis are log(RelPricejt) and log(RelPriceUS,t), the

log of the relative price of natural gas to electricity in the state-month and US-month,
respectively. We use the same data described in Section B.3 for this. The electricity price
for the denominator was described described previously in that section.

One candidate for the natural gas price is the monthly price of natural gas delivered to
residential consumers, which is computed by dividing the reported revenue of local distri-
bution utilities by the associated sales volume. The relevant survey question that EIA uses
defines revenue as “gross revenues including any and all demand charges, commodity charges,
taxes, surcharges, adjustments or other charges billed for gas delivered”; consequently, fixed
charges that utilities frequently include (e.g. basic monthly customer charges that do not
depend on volumes) are included. However, we expect consumers to respond to the variable
(i.e., usage-dependent) component of prices, not the fixed charge component. In the data,
since the fixed charges are averaged over a smaller volume in summer, the residential price
spikes in summer (Appendix Figure B1).

Because of this, we use the monthly price of natural gas at the citygate instead. The
citygate price is the price faced by local distribution utilities (companies that sell gas to
residential consumers); hence it captures variation due to natural gas prices and excludes
fixed charges to residents. In addition, utilities are required by federal law to price gas
on a cost-recovery basis.26 This means that absent forecast errors by the utilities, citygate
prices should capture the variation in gas price perfectly. With forecast errors, utilities are
legally required to return unexpected profits or losses made on natural gas to consumers by
adjusting the future months’ prices downwards or upwards. Citygate prices are not available
for electricity.

When examining home energy bills and in robustness-check specifications, we use the
annual versions of the price variables to match the timing of the outcome variable. These
are based on a separate survey of the universe of firms in the US, but are otherwise identical
to the monthly versions.

24For the 2000 Census, we use Table H40 of Summary Files 3. For the ACS, we use data frome National
Historical Geographic Information System (NHGIS; Manson et al. 2017).

25Other energy sources used for heating include fuel oil, kerosene, coal, coke, wood, and solar.
26Note that they may still charge a markup on distribution of gas, which is more difficult for the state to

monitor.
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B.7 Heating degree-days
To compute the number of heating degree-days (HDD), we use daily gridded tempera-

ture data for the contiguous US (4 kilometers by 4 kilometers resolution) from the Parameter-
elevation Regressions on Independent Slopes Model (PRISM) data developed and maintained
by the PRISM Climate Group at Oregon State University (PRISM Climate Group 2004).27

The PRISM data incorporate the current knowledge of US spatial climate patterns, includ-
ing elevation and prevailing wind patterns, and are the official spatial climate datasets of
the US Department of Agriculture (Daly et al. 2008).

To obtain HDD for each county-month, we first compute the geographic average daily
mean temperature of each Census 2000 block group. For each block group, we take a simple
average of all grid points within, or on the boundary of, the block group. We then compute
HDD for each month for each block group, based on

HDDit =

T (t)∑
x=1

max {threshold− tmeanix, 0} (5)

where HDDit is the HDD of block group i in month t, threshold is a temperature threshold
(set at 65°F, following convention), tmeanix is the mean temperature of block group i on
day x, and T (t) is the number of days in month t. Next, we compute each county’s HDD
for the month by taking the average of the block groups within the county, weighted by the
population in Census 2000. Finally, we scale HDD to a 30-day month, and divide by 1,000,
to yield an average monthly measure of coldness. Block group geographic and population
data come from the NHGIS.

B.8 Household income and population share age 70+
Data for county and state household income and fraction of people age 70 and above are

from the 2000 Decennial Census of Population and Housing Summary Files. Both variables
are derived from the Census using the same approach as described above for ShareGas.

The Summary Files do not report the 25th and 75th percentiles of household income at
the county level. Hence, these variables are constructed using tract-level data on the number
of households in 16 income bins, available in the Summary Files (we use the NHGIS version).
Specifically, we interpolate the proportion of households in the income bins to obtain the
25th and 75th percentiles of household income at the tract level, and then aggregate these
variables up to the county or state level, weighted by the number of households.

B.9 House price index
State house price index used in the paper is the quarterly seasonally-adjusted purchase-

only house price index, available from the Federal Housing Finance Agency (FHFA).

B.10 Unemployment rate
We use the Bureau of Labor Statistics’ county-month unemployment rate as a con-

trol variable. A few county-level observations are missing due to Hurricane Katrina; we

27The specific dataset used is version D1 of the AN81d dataset, retrieved February 2017, from http:

//prism.oregonstate.edu.
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use the state unemployment rate for these observations, and include a dummy for affected
observations in regressions.

B.11 Manufacturing share of the economy
We use the Bureau of Economic Analysis’s state-quarter personal income data when

controlling for manufacturing share of total employee compensation (meant to proxy for
share of the economy). A few observations (fewer than 0.5%) are missing; we impute these
observations by interpolation. Quarterly data are then matched to the appropriate time
period.

B.12 Absolute humidity
We use block group-month level temperature and dewpoint temperature in the PRISM

data to compute absolute humidity. Absolute humidity (in grams per cubic meters) is
computed using the psychrometric formulas in Snyder and Melo-Abreu (2005, Appendix 3)

AbsoluteHumidity =
2165× V aporPressuredew
Temperature+ 273.16

(6)

V aporPressuredew = 0.6108 exp

(
17.27× Temperaturedew
Temperaturedew + 237.3

)
(7)

where Temperature is the temperature in degree Celsius, and V aporPressuredew is the
vapor pressure in kilopascals computed at the dewpoint temperature Temperaturedew in
degree Celsius. We then aggregate to the county-month level, weighting by population in
2000.

B.13 Air pollution data
The data source for air pollution is daily station-level data from the US Environmental

Protection Agency (EPA) Air Quality System (AQS).28 The AQS data contain daily air
quality indices (AQIs) for carbon monoxide, nitrogen dioxide, ozone, particulate matter (2.5
and 10), and sulfur dioxide; data for some pollutants for some stations are missing. We
construct monthly AQIs for each geographic unit of analysis, and then aggregate to the
appropriate time period.

We use a mix of procedures to construct monthly AQIs. For the first procedure, we
compute each pollutant’s AQI at the Census 2000 block group level, and then aggregate
to the county or state level, weighting by population. We compute the AQI for each block
group as the average of all AQI measurements taken within a month at all stations within
100 kilometers, weighted by the inverse of the squared distance to the station. County AQI
is then the population-weighted average of block group AQIs. Block group and population
data come from the NHGIS.

The above procedure (setting a distance threshold and computing the AQI) is standard
in the literature using stations data, but it produces many missing observations at the county
level. We patch missing data using a second procedure. Specifically, if a county has more than
50 percent of its population not assigned a pollutant AQI value in any month, we use a second

28The EPA provides several ways of accessing the data. We use the pre-generated data files, accessed
February 2017.
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procedure to compute its AQI values for all months. For these counties, for each month,
we compute AQI based on the nearest five stations with available measurements, weighted
by the inverse of the squared distance between the station and the county centroid. This
guarantees that all counties have a pollution AQI measure for all months in consideration.

Appendix Table B2 shows, for each pollutant, the breakdown of the procedure used to
compute AQI in the sample of counties used in our analysis of mortality data.

B.14 Independent variables used in heterogeneity analysis
Variables used in analysis of heterogeneity in the effect of heating price on mortality are

from the following sources:

� Poverty rate: Data on proportion of households in the county with income below
150% of the poverty level is from the 2000 Decennial Census of Population and Housing
Summary Files.

� Education: Data on the deceased’s education level is provided in the mortality files.
We drop deaths that occur before the age of 25, with censored education level, for
this analysis. To compute age-adjusted mortality rates by education level, we use
Census/ACS population data, since the SEER data does not contain a breakdown by
education level. We interpolate proportions for the years in which no population data
exist (2001 to 2004). Note that education information is missing for about 5.4 percent
of individuals aged 25 and over in our dataset. This, along with some misreporting on
the death certificate (Rostron et al. 2010), adds noise to our heterogeneity estimates
by education.

� Sex: Data on the deceased’s sex is provided in the mortality files.

� Race: Data on the deceased’s race is provided in the mortality files. Following
Schwandt et al. (2021), we include both non-Hispanic and Hispanic persons under
“Black” or “White”, and exclude American Indian, Alaska Native, Asian, Native
Hawaiian, and Other Pacific Islander persons from either category.

B.15 LIHEAP data
As a robustness check, we use data on Low Income Home Energy Assistance Program

(LIHEAP) spending from the US Department of Health and Human Services’ LIHEAP Data
Warehouse. The data are based on mandatory reports from states for each fiscal year, and
are available at the state-fiscal year level starting in fiscal year 2001 (i.e. since October 2000).
For the nine months in our sample without LIHEAP data, we impute an arbitrary value for
LIHEAP per capita and include a dummy for affected observations in the regressions.
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Appendix Figure B1: National price of natural gas over time
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Appendix Table B1: Data sources

Data Data source Geographic
identifier

Temporal
identifier

Dependent variables
Mortality rate Vital Statistics Mortality Files County Month
Average home energy price Energy Information Administration (EIA) State Month
Home energy usage Energy Information Administration State Month
Home energy bill Census; American Community Survey (ACS) PUMA Year

Independent variables
Home heating energy type Census Census tract Year
Energy prices Energy Information Administration State Month
Temperature PRISM Grid pointa Day
Median household income Census Census tract Year
Fraction of people aged 70 & above Census Census tract Year
House price index Federal Housing Finance Agency State Quarter
Absolute humidity PRISM Grid pointa Month
Air pollution Environ. Protection Agency Air Quality System Pollution monitor Day
Unemployment rate Bureau of Labor Statistics County Month
Manufacturing share of economy Bureau of Economic Analysis State Quarter
LIHEAP assistance funds Department of Health and Human Services State Fiscal year

a 4 km by 4 km resolution

Appendix Table B2: Frequency of the two interpolation procedures used for calculating AQIs

CO NO2 O3 PM2.5 PM10 SO2

Based on distance threshold 1,177 1,048 1,096 2,231 1,762 1,512
Based on nearest 5 stations 1,616 1,745 1,697 562 1,031 1,281

Total counties 2,793 2,793 2,793 2,793 2,793 2,793
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C Additional details and results
This appendix discusses additional details on our specification and results.

C.1 Winter/non-winter specification with HDD as additional di-
mension

Equation (4) in the main text shows our winter/non-winter specification with Winter as
the additional dimension. As mentioned, since some winters or particular months in winter
are colder than other, we also use HDD to define the additional dimension. Specifically, we
estimate the following specification:

log(m)jt = α + λ1 ShareGasjt×log(RelPricejt)×HDDjt

+λ2 ShareGasjt×log(RelPricejt) + λ3 ShareGasj,2000×HDDjt

+λ4 log(RelPriceUS,t)×HDDjt + θ1Zj×log(RelPriceUS,t)×HDDjt

+θ2Zj×log(RelPriceUS,t) + θ3Zj×HDDjt

+θ4 ShareGasj,2000×log(RelPriceUS,t)×HDDj

+θ5 log(RelPriceUS,t)×HDDj + θ6Zj×log(RelPriceUS,t)×HDDj

+γj + τt + δXjt + ϵjt (8)

In this specification, we control for the county’s average HDD in winter, HDDj, in paral-
lel to HDDjt to adjust for systematic differences (e.g., demographics) between colder regions
and warmer ones. Note that since we control for average HDD in winter, the coefficient
on the heating price proxy, ShareGasjt×log(RelPricejt), is the effect in warm months for
the theoretical county with exactly zero HDD in all winter months. This coefficient relies
heavily on an extrapolation because there are few observations with winter HDD of zero —
the median and 5th percentile of winter average HDD (across counties) are 0.78 and 0.31
respectively. Because of this, the coefficient on the heating price proxy is not interpretable.

C.2 Robustness checks and threats to validity
This appendix section assesses whether our results are robust to varying our specifi-

cation, and investigates potential threats to the validity of the research design. Appendix
Table A14 reports these robustness checks for the baseline and winter/non-winter specifica-
tion estimates; our preferred specification is reproduced as the first row of the table.

The first two robustness checks vary which months we define as winter. Our main
specification uses November to March, based on the monthly pattern of average temperature
in the US. We find similar results if we use December to March, like the Europe-focused
literature on excess winter mortality, or as December to February, the three coldest months
of the year.

Winter price spikes might affect mortality in subsequent non-winter months, and po-
tentially bias our winter/non-winter specification coefficients. To investigate this, our next
robustness check specification uses the previous non-winter months as a comparison group,
and finds little difference in our results (row 3).

Next, we vary how we construct our energy price variable. Our main specification uses
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the citygate natural gas price, which more closely reflects the marginal price that residential
consumers face, as opposed to the residential price. For electricity prices, no citygate price
data exist, so we use the residential price. Our results are robust to using the residential
price for natural gas too. We also show that our results are robust to using the annual
instead of monthly natural gas price.

We construct ShareGas as the proportion of all households that use gas for heating and
then focus on gas and electricity prices. While these are the two most common energy sources
for heating, there are other sources too. We show that the results are not sensitive to this
simplification. First, we use an alternative definition of ShareGas, which is the share among
households that use either gas or electricity for heating (row 7). We also show the results
excluding states in which the share of households that use gas or electricity for heating is
less than 75%, such as those in New England where fuel oil is a common heating source (row
8).

One potential concern is that shale gas production in a community itself could affect
mortality and might also make it more likely that natural gas is the energy source used
locally for heating. To address this concern, we estimate the results excluding all states that
produce shale gas. Here too, the results are very similar to our main results.

The main specification includes control variables to address the fact that the Great
Recession overlaps with the study period. We also go further, as a robustness check, and
drop the Great Recession period, as defined by the NBER Business Cycle Dating Committee
(row 10). Another type of concern is that the government LIHEAP program might respond
to or be spuriously correlated with heating prices. We thus control for the state’s per
capita spending on LIHEAP in row 11.29 Next, our main specification focuses on particulate
matter and nitrogen dioxide as these are the pollutants correlated with mortality; in row
12, we include all the air pollution variables as controls, instead of just those that are most
linked to mortality.

Additionally, our results are robust to using a more disciplined approach to selecting
controls based on the double-selection post-LASSO method of Belloni et al. (2014). Specif-
ically, we start with a rich set of 45 potential controls spanning demographic, health care,
temperature, pollution, and social determinants of health (14 of which are our baseline con-
trol variables).30 From this set, the double-selection procedure selects by LASSO a set of

29LIHEAP state-year spending data are from the Department of Health and Human Services.
30In addition to the controls in the main specification, this set includes additional climate variables con-

structed using the PRISM data (monthly average temperature, the averages (over days) of the minimum and
maximum temperatures, average dewpoint temperature, average precipitation, and the average maximum
and minimum vapor pressure deficits), pollution variables from the AQS data (the AQIs of carbon monoxide,
ozone, and sulfur dioxide), health-related variables from the Social Determinant of Health dataset published
by the Agency for Healthcare Research and Quality (log of number of long-term hospitals, log of number of
short-term general hospital beds, log of number of nursing home beds, log number of Medicare eligibles in
the county, proportion of 20+ population that is obese and proportion diagnosed with diabetes), LIHEAP
control (log of total LIHEAP assistance funds per capita in the state-fiscal year), along with state-level num-
ber of doctors per capita from Barreca et al. 2016, and demographic and housing characteristics from the
census (proportion of population that is female, proportion of population that is foreign-born, median age,
proportion of population White, proportion of civilian population consisting of veterans, average household
size, proportion of households that received food stamps/SNAP, proportion of households that are below
150% of the federal poverty line, proportion of 25+ population with less than high school education, propor-
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variables that are useful for predicting log EWM mortality, a set of variables useful for
predicting the local heating price proxy, and a set of variables useful for predicting our in-
strument. We then estimate the effect of heating price on mortality with the union of these
three sets of selected variables as included controls. Applied to our baseline specification,
this procedure selects 6 variables: the interactions of log(RelPriceUS,t) with the log of county
median household income in 1999, the percent of housing units without fuel and the percent
of housing units that are mobile homes in 2000, NO2 squared, absolute humidity, and dew
point. Column 1 of Row 13 reports our IV estimate controlling for these LASSO selected
variables. Our winter/non-winter specification estimates in columns 2 and 3 control for these
selected variables plus additional two- and three-way interactions analogous to our regres-
sions in columns 8 and 9 of Table 2. The estimates are qualitatively similar to our baseline
results.

Figure 1 suggests that much of the variation in ShareGas is between states. For this
reason, our main specification clusters standard errors at the state level. We can instead
estimate the regressions at the state-month level, using only between-state variation. As
shown in row 14, the results are similar. To check if the results are driven by variation
at an even larger geographic scope, we also estimate the state-month level regressions con-
trolling for Census division fixed effects interacted with log(RelPriceUS,t) (row 15). The
baseline specification coefficient remains very similar (with a larger standard error), while
the winter/non-winter specification coefficients are no longer significant but show a broadly
similar pattern. Finally, row 16 uses annual variation in RelPrice in state-month-level re-
gressions and obtains similar results.

Appendix Table A15 reports another set of robustness checks in which we remove dif-
ferent control variables from our main specification. Just as our main results are robust to
adding additional control variables, they are also robust to removing control variables.

We view the results in this appendix as supporting the validity of the finding that a
higher heating price causes an increase in winter mortality.

C.3 Welfare computation: effect size expressed in life-years lost
Our main analysis investigates the impact of heating prices on the extensive margin of

mortality, but it is also valuable to understand the intensive margin, or how many years
of life are lost. For this, we start with heterogeneity in the effect by age groups, reported
in Appendix Table C1. Not surprisingly, we find that most of the mortality averted when
heating prices are lower is among older age groups.

We report in the last row of Appendix Table C1 the impact of heating prices on life-
years lost, which takes into account the remaining life expectancy of those who die (or whose
deaths are averted). Combining our estimated mortality effects with residual life estimates
from the life tables for 2000 published by the National Center for Health Statistics, we find
that a 1% increase in the price of heating causes around 7 annualized life-years lost per
100,000 people during winter, or equivalently 3 annual life-years lost per 100,000 people.
(The data appendix provides further details on this calculation.)

Using $369,000 as the value of a statistical life-year (Kniesner and Viscusi 2019), our

tion of persons in institutionalized group quarters, proportion of housing units that are rented, proportion
of housing units that are mobile homes, and proportion of occupied housing units without fuel).
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estimates imply that a 1% increase in the price of heating leads to $27.27 (in 2016 dollars)
of life-years value lost per household. We can compare this cost to the amount of money
needed to avert those deaths. This sheds light on whether mortality risk and money are
being traded off in a way that seems socially optimal.31

We calculate the amount of money needed to avert the heating-price induced deaths two
ways. First, assume that the mortality occurs exclusively through the heating consumption
channel — from cutbacks in heating use — rather than the non-heating consumption channel.
As discussed in Section 4.1, the increase in energy bills when the price of heating rises is less
than one-for-one, because households cut back on heating. Our estimates of how heating
prices affect energy bills in Table 1 imply that a household reduces spending on heating by
$1.98 annually in response to a 1% price increase, compared to if they had not cut back on
heating.32

Thus, the life-years cost is more than 13 times as large as the extra outlay on heat-
ing needed to avert the mortality, which is consistent with households either facing credit
constraints or other frictions or not optimizing. The benefit of compensating households for
increases in heating bills is therefore significantly larger than the cost. This suggests that ex-
panding safety-net programs such as LIHEAP would be welfare-enhancing. The increase in
benefits could be indexed to the weather or the price, offering households more compensation
when the temperature is abnormally cold or the price especially high.

A second way of calculating the outlay needed to avert the mortality is to assume that
one would need to offset all of the cutbacks in other spending too (non-heating consumption
channel) in addition to the heating consumption channel. Then, the cost is simply 1%
multiplied by the starting-point heating expenses. This amount is $8.06, which is still much
smaller than the monetary value of the lives lost. Importantly, the $8.06 value is an upper
bound on the outlays needed because some cutbacks in spending that households make in
response to higher heating bills (e.g., restaurant dining, cigarettes) do not increase their
mortality risk.

Our empirical results are suggestive that the heating consumption channel is the main
one, so the first of the two calculations seems like the more appropriate one. It implies that
the lives lost due to cutbacks in heating when heating prices increase are more valuable than
the additional spending required to avert those deaths.

Our findings have implications for several types of policies that can reduce households’
heating costs. For example, they help quantify a potentially important benefit—averted
deaths—of the federal Low Income Home Energy Assistance Program (LIHEAP), which
assists low-income households with their energy bills, and state energy price subsidy programs
(such as the California Alternate Rates for Energy).33 The computations above suggests that
increasing compensation to households so that they avoid such large cutbacks would be cost-

31If we assume that households are in fact optimizing, then we could instead use this analysis to calculate
a new revealed-preference value of a statistical life year, which would be $26,800. However, the assumption
that low-income households are not credit constrained would be a tenuous one.

32To calculate spending on heating, given that our regressions estimate impacts on the total energy bill,
we use the fact that 29% of a household’s energy spending is on heating (RECS 2009).

33Hahn and Metcalfe (2021) evaluate the welfare impacts of the California subsidy program that arise
through economic redistribution and environmental costs; their analysis does not directly assess its health
effects.
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effective. LIHEAP payments do not typically increase when the price of heating increases,
which leaves the poor uninsured against this risk, so the findings also point to potential
design improvements for LIHEAP.34 The results are also relevant for cost-benefit analysis of
weatherization programs that reduce households’ need for heating.

C.4 Welfare comparison of value of averted life lost
Based on a spatial equilibrium model, Bartik et al. (2019) estimate a net willingness-

to-pay for fracking of $2,500 per household annually among households living in shale play
counties. This estimate takes into account local factors like increased economic activity and
possibly negative changes in amenities due to fracking. In their replication kit, they also
report that there are 15.9 million households living in 16 main shale plays, which implies
that the total US local-level welfare gain is $40 billion a year.

Next, our results imply that the decline in the price of natural gas relative to electricity
between 2005 to 2010 averted 12,5000 deaths per year. Using the value of a statistical life
(VSL) of $10 million, this maps to a gain of $125 billion a year. Alternatively, since most of
the mortality averted is among older individuals, we can quantify this benefit in terms of the
value of life years lost averted. Using a similar calculation as that discussed in Appendix C.3,
this represents 279,000 life-years lost per year which maps to $103 billion using the value of
a statistical life year (VSLY) of $369,000 in 2016 dollars (Kniesner and Viscusi 2019). Shale
gas production is estimated to explain 83% of the decline in natural gas price during this
period (Hausman and Kellogg 2015). This means that the national-level benefit of fracking
in the form of averted deaths is more than twice as large as the local-level net welfare gain,
and should not be ignored when considering the effects of shale production of natural gas.

Finally, again using the VSL of $10 million (or VSLY of $369,000), our results map to
$4.2 billion in terms of averted deaths (or $3.2 billion in terms of averted life-years lost) for
each percent decrease in the heating price. Davis and Kilian (2011) estimate that the US
residential natural gas price ceilings of 1954–89 imposed a welfare cost of $3.6 billion annually
in 2000 dollars. Comparing the two estimates, and adjusting for inflation and differences in
the number of households within the two periods, the health benefit of a price decrease of
2.25 percent would have outweighed the allocative costs.

34On average between 2001 and 2010, 4.5% of US households received LIHEAP heating assistance per
year, which is 23% of households below 150% of the poverty line. LIHEAP pays eligible households a
preset amount each year based on income and household size, and, depending on the state, also fuel type
or the last year’s utility bills. Arizona is, to our knowledge, the only state that varies the amount based on
contemporaneous bills or prices (LIHEAP Clearinghouse 2010).
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Appendix Table C1: Heterogeneous effects on mortality by age groups

Dependent variable: Mortality rate

All causes All EWM causes
(1) (2)

Heating price proxy 10.5 9.72∗∗

[6.50] [4.37]
Heating price proxy × 65–74 112.8 94.9∗

[70.8] [56.4]
Heating price proxy × 75+ 254.8∗ 262.0∗∗

[133.1] [121.5]

Observations 460,020 460,020
Mean mortality rate 3835.3 2663.5
Implied mortality effect for 65–74 population 123.32∗ 104.62∗

[70.54] [56.52]
Implied mortality effect for 75+ population 265.30∗ 271.71∗∗

[133.95] [121.41]
Implied effect on life-years (per 100,000 population) 6.99 6.50

Notes: Standard errors clustered by state in brackets. Asterisks denote significance: * p < .10, ** p < .05, *** p < .01.
The sample comprises county-year-months-age group for winter months. Mortality rates are age-adjusted mortality
rates expressed as annual deaths per 100,000 population; see data appendix for further details. Heating price proxy is
ShareGasjt × Log(RelPricejt), where ShareGasjt is the county-year proportion of occupied housing units with natural
gas as their main heating source, and RelPricejt is the log of the ratio of the state-month citygate price of natural gas,
averaged over the three- and four-month lag, to the corresponding residential price of electricity. 65–74 is an indicator
variable that equals one for the 65 to 74 population. 75+ is an indicator variable that equals one for the 75 and over
population. Heating price proxy and its interaction with Trait are instrumented using ShareGasj,2000 × Log(RelPriceUS,t)
and its interaction with Trait. All columns include all fixed effects and control variables from column 2 of Table 2, the
main effect for each age group indicator, and the interaction of each fixed effect or control variable with each age group
indicator. Implied mortality effect for each age group is the coefficient on the heating price proxy plus the coefficient
on the analogous interaction term. Implied effect on life-years is the implied effect of a 1% increase in heating price on
life-years per 100,000 population. It is the weighted sum of the effect on life-years across the 3 age groups, each calculated
as the product of the mortality effect and the average residual life estimate for the age group based on the 2000 National
Vital Statistics Reports, where the weights are the proportion of the age group in the US population in 2000. See data
appendix for further details.
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