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Abstract

Particulate matter significantly reduces life expectancy in India. We use a randomized

controlled trial in the state of Punjab to evaluate the effectiveness of conditional cash

transfers (also known as payments for ecosystem services, or PES) in reducing crop

residue burning, which is a major contributor to the region’s poor air quality. Credit

constraints and distrust may make farmers less likely to comply with standard PES

contracts, which only pay the participant after verification of compliance. We ran-

domize paying a portion of the money upfront and unconditionally. Despite receiving

a lower reward for compliance, farmers offered partial upfront payment are 8-12 per-

centage points more likely to comply than are farmers offered the standard contract.

Burning measures based on satellite imagery indicate that PES with upfront payments

significantly reduced burning, while standard PES payments were inframarginal. We

also show that PES with an upfront component is a cost-effective way to improve

India’s air quality.
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1 Introduction

Poor air quality is a leading preventable cause of death and morbidity worldwide (Fuller

et al., 2022). In North India, air pollution reduces life expectancy among the region’s half

a billion residents by up to 9 years, one of the largest health burdens from pollution in the

world (Lee and Greenstone, 2021). The use of fires to clear agricultural land is a major

source of particulate matter in India, as in other low- and middle-income countries. Despite

a clear economic case for reducing this pollution, as well as efforts to prohibit and fine those

who produce it, agricultural pollution in North India has increased over the last few decades

(Appendix Figure A.1). Arguably, existing policies have failed to account for the incentives

of two groups of actors: local officials’ incentives to enforce penalties when the costs and

benefits of polluting activities are in different political jurisdictions, and farmers’ incentives

to protect the environment given that the costs of pollution are largely borne by others.1

In this paper, we ask whether a policy that explicitly considers these incentives can reduce

pollution.

Every winter, farmers in North India burn rice stalk (residue) to clear fields. Smoke

blankets the region and spreads downwind to major population centers such as New Delhi,

affecting the health of millions of people (Cusworth et al., 2018).2 A recent study estimates

that crop residue burning caused 86,000 premature deaths in India in 2018, with over half of

the deaths due to paddy (i.e., rice) residue burning in the state of Punjab (Lan et al., 2022).

Roughly 4 million acres of paddy residue were burned in Punjab in 2018.3 Using $700,000 as

the value of a statistical life (Majumder et al., 2018), the average mortality costs per acre of

burning are $8,000.4 As a comparison, paddy production generates about $500 per acre in

1Dipoppa and Gulzar (2022) provide evidence of this inter-jurisdictional externality, which undermines
state and local actors’ incentives to enforce fines and bans. Farmers’ political clout and equity concerns
around penalizing small farmers undermine enforcement even further.

2Beyond India, pollution from crop residue burning contributes to the pollution burden in China (Chen
et al., 2017), Southeast Asia (Oanh et al., 2018), and Africa (Cassou, 2018).

3There were 6 million acres of Kharif season non-basmati paddy production in Punjab in 2018, according
to Agricultural and Processed Food Products Export Development Authority (2018) (using official Govern-
ment of India statistics) and the proportion burned was 66% for Punjab in 2018, according to Kumar et al.
(2019).

4Throughout, we use 2018 real values and an exchange rate of |79 to $1. Besides the mortality costs we
estimate in this calculation, there are also climate change, labor productivity, and morbidity costs. Murali
et al. (2010), estimates that residue burning in India emits around 4 million metric tons of carbon dioxide
equivalents each year, or one percent of annual global greenhouse gas emissions (NASA, 2017; Jain et al.,
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revenue, and, of course, even less in profits.5 This suggests that eliminating residue burning

would almost certainly increase societal welfare.

Eliminating crop residue burning does not require an end to rice production. There are

ways to remove and manage residue without burning, and the government subsidizes certain

farm equipment that can accomplish this. In addition, since 2015, farmers in North India

have faced bans on burning residue. These policies, however, have been ineffective. In this

paper, we investigate the feasibility of Payments for Ecosystem Services (PES) contracts,

which pay farmers for not burning crop residue. By conditioning cash transfers on avoiding

this environmentally harmful behavior, PES programs raise the private cost of environmen-

tal degradation for farmers. Functioning as a carrot rather than a stick, PES avoids the

political unpalatability of enforcing fines when the benefits of doing so mainly accrue to

other constituencies. In addition, compared to equipment (input) subsidies, PES offers more

flexibility to farmers by rewarding them for the socially desired action regardless of how they

achieve it.

However, contextual and institutional factors may limit the efficacy of PES — and, more

broadly, conditional cash transfers — in low- and middle-income countries. PES participants

must undertake a costly action to comply with the contract and receive payment. Farmers

may not comply if they do not trust that the conditional payment will be made, or if they

lack the cash on hand to pay for alternatives to burning before receiving the PES payment,

limiting PES efficacy.

PES contracts that offer partial payment in advance may help with trust and liquidity.

An upfront payment can send a costly signal, increasing trust that the subsequent conditional

payment will occur. It can also alleviate liquidity constraints when farmers need to spend

money on alternatives to burning. However, recouping the upfront payment if the participant

fails to comply is often infeasible or undesirable in low-income settings. Practically, upfront

payments must then be unconditional, potentially undermining their usefulness for at least

2014; Sarkar et al., 2018; Shindell et al., 2012).
5District-level data from ICRISAT show that in 2017, rice yields in Punjab were on average 17 quintals

per acre, with a maximum yield of 20.4 quintals per acre (Rao et al., 2012). At a minimum support price
of |2,000 per acre (Sharma, 2022), this implies a revenue of |35,000-41,000 per acre ($440 to 518). In our
sample in Punjab, farmers reported profits of around $300 per acre. For consumer welfare to outweigh the
mortality costs of burning, willingness-to-pay for rice would have to exceed 15 times the market price.
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two reasons. First, for a given total payment, offering some of it upfront and unconditionally

lowers farmers’ marginal incentive to comply because the conditional payment is smaller.

Second, given a certain level of effectiveness, upfront payments reduce cost-effectiveness due

to payments to non-compliant farmers. Hence, the net effect of upfront and unconditional

payments on compliance and cost-effectiveness is ambiguous.

Motivated by these observations, we conducted a randomized controlled trial in 171

Punjabi villages during the 2019 rice growing season to compare the efficacy of standard PES

and partial upfront PES. We compare three farmer groups: those who were not offered a

contract (control), those who were offered a contract with payment conditional on verification

that the farmer did not burn (standard PES), and those who were offered a contract with a

partial upfront payment that was explicitly unconditional on compliance, with the remainder

conditionally paid after verification (upfront PES).6

Contract take-up was comparable and relatively high across treatment arms (72%). Our

main finding is that, despite lower conditional payments, upfront PES led to 10 percentage

points higher contract compliance than standard PES; this represents a doubling of the

compliance rate. Remote sensing estimates of burning are consistent with the contract

compliance results, showing a roughly 10 percentage point lower rate of burning among

farmers offered upfront PES versus standard PES. The remote sensing measure also reveals

that standard PES had no effect on burning when compared to the control group. This

indicates that standard PES payments were inframarginal, i.e., paid to farmers who would

not have burned even without PES. The upfront PES effect size corresponds to a 50-80%

higher rate of not-burning than in the standard PES arm or control group. Consistent with

the remote sensing results, in our endline survey, farmers in the upfront treatment arm were

9.5 percentage points more likely than those in the control group to report using balers

(equipment used to bundle residue that has been removed from the field). Notably, balers

are not among the “crop residue management” (CRM) farm equipment that is subsidized

by the government. Meanwhile, farmers in the standard PES treatment arm reported no

increase in the use of balers or other CRM equipment.

6Our design has subtreatments that vary specifics of the standard or upfront PES contract, but our
primary empirical specification pools across subtreatments, as described in our pre-analysis plan.
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Why did partial upfront contracts outperform standard PES contracts? An analysis of

heterogeneous treatment effects using (pre-specified) baseline measures of generalized liq-

uidity constraints and distrust is uninformative. Recognizing that generalized measures are

imperfect proxies for specific PES-related beliefs and constraints, we also examine farmer

responses to endline survey questions about the role of cash constraints and trust in deter-

mining their PES program response. Farmers assigned to the upfront PES treatment have

6.8% higher trust that contract payments will be made than those assigned to standard

PES.7 Around 70% of farmers say cash on hand affected their CRM decisions, suggesting

that this was an important overall constraint, but responses did not differ by treatment.

To compare PES costs to the benefits of reduced residue burning, we first calculate the

cost per additional acre not burned for the two treatments using our remote sensing based

outcome. Standard PES has no statistically significant impact on burning, and, reflecting

this, we observe noisily estimated positive costs that are sensitive to measurement choices.

Upfront PES, on the other hand, reduced burning, and the cost per additional acre not

burned under this arm ranges from |2,700 to |4,050 (or $34 to $51). Despite the fact that

a substantial portion of the farmers paid upfront burned anyway, and that some compliers

were inframarginal, the estimated cost of the program is drastically lower than our rough

per-acre mortality benefit estimates ($8,000). Alternatively, we can compare PES for crop

residue burning to pollution abatement opportunities in other sectors, specifically India’s

electricity sector. Again, the difference is striking: the cost per life saved from installing

scrubbers in coal-fired power plants is roughly $400,000 (Cropper et al., 2019) versus $3,000

to $4,400 for upfront PES.

The paper is related to several literatures. First, multiple papers highlight the impor-

tance of contract design for agricultural outcomes, such as microfinance and crop insurance

(Carter et al., 2017). Salient design features include timing of when the insurance or loan

contract is offered (Burke et al., 2019; Fink et al., 2020; Casaburi and Willis, 2018), and how

different contract features are bundled (Giné and Yang, 2009). We highlight the importance

of contract design in environmental programs.

7If PES contracts were implemented as policy, repeated implementation might eventually address distrust
in payments, making standard PES more cost effective over time.
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Second, conditional cash transfers are widely used to incentivize specific outcomes, and

recent research tests the importance of conditionality for take up and outcomes (Baird et al.,

2011; Akresh et al., 2013; Attanasio et al., 2015; Aker and Jack, 2021). Instead of focusing on

payment conditionality, we focus on payment timing and demonstrate that partial upfront

payment during enrollment can improve compliance with a conditional contract.8

Third, while PES is widely used and studied, causal estimates of its impact, particu-

larly comparisons of alternative PES program designs, are scarce. Exceptions include Jay-

achandran et al. (2017), who find that a PES program successfully reduced deforestation

in Uganda, and Jack (2013) and Oliva et al. (2020), who show that program design affects

the cost effectiveness of afforestation contracts. While PES programs have been used to

address environmental externalities associated with land use, such as deforestation, they

have rarely been applied to particulate matter, which is one of the most important envi-

ronmental challenges worldwide. Important exceptions include Edwards et al. (2020), who

find no impact of a bundled intervention of community-level training including payments

to village governments for forest fire prevention, and Kramer and Ceballos (2018) who find

that conditioning agricultural insurance payouts on not-burning in India lowers burning, but

also insurance coverage. We contribute the first evaluation of the impact of alternative PES

contract structures on efficacy and cost-effectiveness in crop residue burning.

Finally, a growing literature investigates the causes and consequences of crop residue

burning (Behrer, 2019; Garg et al., 2021; Pullabhotla, 2018; Graff Zivin et al., 2020; Rangel

and Vogl, 2019; He et al., 2020; Dipoppa and Gulzar, 2022; Nian, 2023). A smaller number

of papers test the efficacy of burning-reduction policies; for instance, Edwards et al. (2020)

and Kramer and Ceballos (2018) both vary incentives for burning in the context of bundled

interventions. In contrast, we focus on contract design. We leverage novel data from a

new remote sensing model to measure crop residue burning (see Walker et al. (2022) for

further detail), which is better suited to detecting plot-level changes in burning than existing

measures of active fires, burn scars or smoke (Balboni et al., 2021; Behrer, 2019; Edwards

et al., 2020; Rangel and Vogl, 2019; Jayachandran, 2009).9

8Evidence from other settings supports the notion that the timing of transfers can affect program out-
comes, because of liquidity (Coffman et al., 2019) or other channels.

9Existing remote sensing measures of fires have historically relied on high frequency but low spatial
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2 Background and Study Design

2.1 Crop residue burning and policy responses

About 80% of the planted area of Punjab (known as the“granary of India”) is cultivated

using an annual paddy rice-wheat dual crop system. Rice is farmed during Kharif, from

June to October, and wheat during Rabi, from November to April. The introduction of

mechanized harvesting in the 1980s resulted in widespread adoption of the dual crop system,

but also created a need to manage waste on the field: mechanized rice harvesting leaves

8 to 12 inches of stalk, representing over 2.5 tons of residue per acre of paddy rice (Jain

et al., 2014). In a 2019 listing survey with farming cooperative members in our two study

districts, all farmers reported using a combination of mechanized harvesting techniques that

necessitate residue removal.

Controlled burning has gradually emerged as the primary method used by Punjabi farm-

ers to manage crop residue. Using satellite imagery from 2000 to 2018, Appendix Figure

A.1 shows a rising incidence of fires across Punjab, as well as in our two study districts

of Bathinda and Faridkot (Distributed Active Archive Center, 2018). Burning is prevalent

despite reasonable levels of knowledge of CRM; in our baseline survey, nearly 60% of farm-

ers reported awareness of and some use of CRM alternatives to burning. While cost is the

primary reason for farmers’ preference for burning, they also reported that renting CRM

equipment from a cooperative or custom hiring center would take around a week during

peak season, potentially delaying Rabi sowing. Furthermore, the majority of farmers who

were familiar with CRM alternatives expressed concern about the perceived negative effects

on agricultural productivity.10

Recognizing the negative pollution externalities from residue burning, the Indian Penal

Code makes residue burning a punishable offense (Section 188). A 2015 court judgement

resolution sensors, such as MODIS (e.g., Vadrevu et al. (2011); Liu et al. (2019)). Newer sensors offer
higher spatial resolution but less frequent observation, which potentially miss some crop residue fires due to
their short visual signature (e.g., Badarinath et al. (2006); Singh et al. (2021)). Planet Labs high-resolution
temporal and spatial imagery helps us overcome this tradeoff. See Walker et al. (2022) for additional details.

10Agronomic evidence suggests that CRM may indeed lower productivity in the short run by immobilizing
available nitrogen in the soil. In the long run, however, incorporating residue into the soil may increase
organic content and available nutrients, improving productivity (Sarkar et al., 2018).
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banned residue burning and directed North Indian state governments to fine farmers who

did so, with fines ranging from |2,500 to |15,000 depending on the farmers’ landholdings

(Bhuvaneshwari et al., 2019; National Green Tribunal, 2015).11 Penalty-based policies have

had limited impact due to agricultural lobby opposition and insufficient enforcement. A

second set of policies subsidizes in-situ CRM alternatives (in-situ techniques either pull up

and mulch the stalk or leave it standing). In 2017, the central government announced a two-

year $144.3 million program for Punjab, Haryana, and Uttar Pradesh to subsidize equipment

such as a new seeding machine known as the Happy Seeder, which sows directly through

the paddy residue, and the Super Straw Management System, which chops residue. The

subsidy program did not cover ex-situ equipment that removes the residue from the field,

such as using equipment (or labor) to pull up and gather the straw, then using another piece

of equipment (a baler) to bundle it into bales for industrial use.12

Even with the government subsidy scheme in place, the cost of CRM equipment rental

remains high for farmers. Farmers typically rent the equipment from hiring centers or agricul-

tural cooperatives, which qualify for an 80% discount on equipment purchases.13 According

to our baseline survey data, the median rental cost for a Happy Seeder was |1,250 per acre,

and the total cost of in-situ residue management was about |3,000 per acre. Farmers may

still prefer unsubsidized ex-situ methods because they are cheaper (e.g., renting a baler is

around |1,000 per acre, even without a subsidy in place) or because they are perceived as

less damaging to yields than in-situ methods.

To summarize, the policies that have been implemented to address residue burning have

been largely ineffective to date. This motivates our focus on a more flexible alternative that

aligns incentives: subsidizing not-burning through payments for ecosystem services (PES).

11The National Green Tribunal ruling applied to Rajasthan, Uttar Pradesh, Haryana, and Punjab.
12Baled straw is often used as an industrial heat source, displacing fossil fuel combustion. Nian (2023)

provides evidence from China that the emergence of biomass power plants reduced agricultural burning in
the immediate vicinity.

13Individuals can purchase equipment at a 50% subsidy, after which a Happy Seeder cost about |40,000
($500), but few small- and medium-sized farmers own them.
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2.2 PES contracts

We experimentally compare the effectiveness of alternative PES contract designs for reducing

crop residue burning to a status quo control group. The treatment arms are summarized in

Figure 1.

Our first treatment arm implements a standard PES contract, with payments contingent

on not burning and paid after compliance is verified. (We discuss how contracts are monitored

and enforced later in this section.) Based on discussions with the Punjab government and

their view of what payment level was scalable, our base contract sets payment at |800 per

acre. To change behavior, the payment needs to cover the marginal cost of CRM relative to

burning, not the full cost of CRM. Burning may take time or require some material inputs,

and some farmers may perceive it as detrimental to soil fertility. The variability in whether

farmers burned in the status quo (8-20% did not burn in our control group, according to

our remote sensing estimates) indicates heterogeneity in farmers’ reservation price to switch

away from burning; some farmers have a negative reservation price, but the majority have a

positive reservation price, which likely varies considerably. While one would not expect an

|800 per acre incentive to compel all farmers to avoid burning, the subset with a positive but

modest cost to avoid burning should be on the margin of changing their behavior. To assess

the importance of payment levels, we introduce a variant on the standard PES contract that

pays twice as much as the base contract, or |1600 per acre not burned.14

The standard PES contract pays out only after the desired behavior has occurred (i.e.,

not burning). Farmers may not undertake a costly action in anticipation of a future payment

if they do not trust the principal to follow through with the payment or if they lack cash on

hand to carry out the action required for compliance. Both distrust and liquidity constraints

are plausible barriers to compliance in our study setting. At baseline, only 13% of farmers

said they had complete trust in the government, with even lower levels of trust in NGOs,

about 7%. Less than half of the sample had |5,000 in savings, and the majority said that

14In November 2019 (after our intervention), the federal court ordered the Punjab government to pay
farmers |100 per quintal of paddy, or about |2,500 per acre, conditional on (self-reported) not burning.
Concerns regarding farmer’s self-declarations that they did not burn led to the program’s suspension a few
weeks later. In our endline survey, about 30% of the sample was aware of the government program, and
most of them reported learning about the program after having begun residue management. 80% of those
who were aware of the program did not anticipate timely payments.
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it would be somewhat difficult or difficult to access a |5,000 loan. (A typical farmer in

our sample has 5 acres of paddy production, so renting a baler would cost about |5,000.)

Our second treatment arm was designed to address these constraints by offering partial

payment upfront, with the remainder paid conditional on contract outcomes. The sum of

the (potential) upfront and ex post payments was held fixed at |800 to match our base

contract. We evaluate two variants of the upfront PES treatment, which vary the share paid

upfront (25% or 50%).

While upfront payments could, in principle, be recouped from a participant who does not

comply, imposing such conditionality is challenging in practice (e.g., because participants are

poor). Our contract explicitly made the upfront payment unconditional. Because the upfront

component reduces the conditional payment amount — the farmer’s incentive to comply —

this feature could reduce compliance. In addition, because unconditional payments will be

made to some farmers who then do not comply, the upfront payment could reduce PES

cost-effectiveness, even if it increases compliance.

Farmers’ participation in all treatments was voluntary, and non-compliance with the PES

contract was only ‘penalized’ through non-payment. There are two reasons that payments

made to farmers are not a good proxy for the program’s impacts. First, some people who

complied with the contract might have undertaken the desired activity even in the absence

of the contract, i.e., the payments are inframarginal to their non-burning. Second, because

there is no penalty for non-compliance, many farmers may enroll and later renege, increasing

implementation costs particularly when some payment is offered upfront. Our study design

allows us to evaluate these concerns by measuring “additionality” (i.e., whether contracts

reduce burning relative to the status quo) as well as evaluating the cost-effectiveness of

alternative PES contracts.

2.3 Sample

We chose Bathinda and Faridkot as our two study districts in Punjab because both have high

rates of burning and little activity to encourage CRM adoption by other organizations.15 We

15According to the Visible Infrared Imaging Radiometer Suite (VIIRS) satellite data (Distributed Active
Archive Center, 2018), Faridkot had about 1.9 fires per square km in 2018, ranking sixth highest in the
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limit our sample frame within these districts to villages with functioning farmer cooperatives,

and within these villages, to farmers who were cooperative members (as of August 2019).

From among the 393 villages in our sampling frame, we chose the 300 with the most members

for screening.

Initial screening of farmers for eligibility was done by phone in fall 2019. A farmer was

eligible if he or she grew between 2 and 12 acres of paddy, planned to harvest after the sec-

ond week in October and plant the Rabi crop, and employed farm equipment indicative of

burning (namely, used a reaper or did not use a chopper) in the previous year. The last cri-

terion means that our sample has higher burning than average; by minimizing inframarginal

payments through sample design, we increased statistical power to detect changes. We chose

176 villages with at least 18 eligible households for an in-person baseline survey.16 Villages

with fewer than six completed baseline surveys were eliminated, resulting in a final sample

of 171 villages and 1,668 respondents.

To assess the representativeness of our sample, in early 2020 we conducted a census in four

study villages. 70% of farmers reported being cooperative members, which was one inclusion

criterion for the study sample. Appendix Table A.1 presents summary statistics for paddy

farmers from the census (column 1), for cooperative members from the census (column 2), for

study-eligible farmers (column 3), and for farmers enrolled in the study (column 4). We also

report tests of whether cooperative members are different from census farmers. These two

groups seems largely similar across a range of variables, including agricultural experience,

area cultivated, knowledge of and prior experience with CRM techniques, distrust, and

awareness of and application to government PES programs.17 Second, we report tests of

whether cooperative farmers differ from farmers enrolled in the study.18 Since we only

enrolled farmers cultivating 12 acres or less (a criterion that 80% of census farmers met),

state, while Bathinda had 1.7 fires per sq km, ranking ninth. We present total fires from this data source in
Appendix Figure A.1.

16The baseline prioritized villages with the largest number of eligible households based on listing data.
Baseline data collection stopped once the target sample of 176 villages was reached. Within a village,
enumerators moved down a randomly ordered eligible list until 16 surveys were completed or the list was
exhausted.

17We discuss measurement of these variables in detail in Section 3.3.
18Note that we only have 38 observations for the number of farmers enrolled in the study, since this table

only includes farmers from the four census villages.
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study farmers cultivated less land than census farmers (5.3 acres versus 7.7 acres), but are

otherwise similar across the broad range of characteristics we measured.

2.4 Randomization and contract implementation

We randomly assigned villages to one of four treatment arms (two standard PES subtreat-

ments and two upfront PES subtreatments) or the control group. Figure 1 summarizes the

sample size per arm. Randomization occurred while the listing and baseline surveys were

ongoing.19 Eligible farmers in treatment villages received a follow-up visit and were offered

a PES contract, on average 5.6 days after their baseline survey. If they could not be located

or did not have a bank account, they were not offered the contract.20

Farmers received a basic program description as part of the contract offer (see Appendix

A.2). The contract (offered by J-PAL) corresponding to their treatment arm was then

shown to interested farmers, and the terms were read aloud by the enumerator.21 Farmers

who agreed to the contract terms received an information handout outlining the terms and

conditions, as well as procedures for monitoring and verifying burning outcomes. During

the enrollment visit, enumerators recorded whether the farmer was offered the PES contract

and, if not, why (e.g., the household could not be found or did not have a bank account), and

whether the farmer took up the contract.22 A farmer’s entire paddy acreage (as physically

measured by the surveyors at baseline) was automatically enrolled if the farmer took up the

contract. The maximum amount a farmer could be paid under the contract was |16,000 for

farmers in the |1,600 per acre arm and |8,000 in the other treatment arms.23 Farmers in

the upfront PES arm received the upfront portion of their payment via direct bank deposit

2-3 days after enrollment.

19Initial assignment was stratified on district, below versus above median number of eligible households
based on phone listing survey, baseline survey completion in the village, and listing survey completion in the
village. We include a fifth strata of 15 villages that were randomly added to the different arms to supplement
the sample size. These were villages where the listing survey included between 6 and 17 households. The
order of listing was randomized, and the baseline and treatment implementation followed this order. Baseline
surveyors did not know a village’s treatment status.

20Contract payments were electronic, with bank account information only collected from treatment farmers.
21A sample contract for the |800 per acre arm with no upfront payments is included in Appendix A.3.
22Only 6 farmers were screened out because they did not have a bank account.
23Farmers eligible for the study cultivated 12 or fewer acres of paddy. For farmers with more than 10 acres

of paddy, about 7% of the sample, the value of the contract per acre is constrained by the cap.
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Contract monitoring and enforcement required verifying that none of the paddy plots

were burned. To detect whether burning had occurred, project enumerators had to visit

the plot during the short window between when the farmer removed the residue, whether

by CRM or burning, and when the farmer tilled the soil for sowing the Rabi crop. Prior to

the completion of residue management, a monitoring visit could not rule out future burning.

After tilling, visual signs of burning become much less obvious. Because monitoring was

required during this farmer-specific window of a few days, the farmer was responsible for

contacting J-PAL after managing residue and at least four days before sowing the Rabi crop.

Up to two monitoring visits could be requested if, for example, different plots had different

sowing schedules. When farmers called in, appointments for monitoring were made, and the

map of all study plots collected at baseline was given to the monitor.24

Visual inspection at the right moment can reveal quite clearly if a field was burned.

Enumerators were required by the monitoring protocol to observe and record multiple ob-

servations on each plot, including burned straw or residue, grey or black ash on the soil,

burned root residue, burned grass or weeds on the plot boundaries, and burned leaves or

tree branches on the plot boundaries. They were told to inspect the plot perimeter and

walk onto each plot and inspect the soil. Farmers were not immediately informed of the

monitoring results after it was completed. Monitoring staff did not know specifically how

the different data they recorded would be aggregated to determine contract compliance. The

observations on different fields were combined into a single farmer-level compliance metric

— any burning was a contract violation. Payments to farmers who had complied were made

on a rolling basis, approximately 2-3 days after monitoring.

3 Data

Figure 2 presents the agricultural season for the paddy-wheat cropping cycle in Punjab, as

well as the data collection timeline. Our data collection is focused on measuring impacts on

24Placing the onus for monitoring on the farmer may lower compliance. However, it increases monitoring
accuracy since the precise timing for verifying absence of burning varies from mid-October to late November.
Farmers who had not yet requested monitoring were contacted in the third week of October with a reminder
that it was the farmer’s responsibility to request monitoring.
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farmer behavior. Because only a small proportion of farmers in each village participated in

our study (on average, 9.8 farmers per village), we do not seek to detect treatment effects

on village-level outcomes (such as air quality).

3.1 Survey and contract compliance data

Baseline survey We conducted baseline surveys with the identified person on the coop-

erative member list in October 2019. This person was in charge of household agricultural

decisions in more than 90% of households. We collected data on demographics, agricultural

production, income and credit constraints, trust in organizations, and barriers to CRM.

Farmers listed all plots where paddy was grown, and accompanied the enumerator to each

plot to collect geocoded perimeter measurements. The plot boundaries form the basis for

monitoring treatment farmers’ contract compliance and for linking satellite imagery to farm-

ers for both the treatment and control groups.25

Endline survey We conducted a phone-based endline survey in June 2020, following the

completion of the Rabi harvest.26 The survey gathered information about self-reported field

burning and CRM techniques, as well as perceptions about limited cash on hand as a factor

in their CRM decision and trust in the payment (for the treatment groups only). We also

gathered information on agricultural production and income over the previous two seasons

(Kharif 2019 and Rabi 2020). Section 4.1 reports attrition between the baseline and endline

surveys and balance tests.

Contract take-up and monitoring data At the time of contract offer, we record farmer

enrollment decisions and non-enrollment reasons. We observe monitoring results for those

who did request it, including the distinct plot-level signs of burning described above. These

were combined to produce a binary burning outcome: A farmer complied with the contract

25At each plot, the enumerator walked the perimeter of the field using a mapping application on a GPS-
enabled tablet. We drop 47 fields (1.6 percent) where either the field ID was missing from the geospatial
data or two fields completely overlapped. Because the plot was measured before treatment was assigned,
any measurement error in plot inventories or field perimeters should be orthogonal to treatment.

26The contract rollout and monitoring were completed prior to the COVID-19 pandemic. However, the
in-person endline survey, scheduled for April 2020, had to be switched to a phone-based survey.
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if none of his or her plots show signs of burning. A total of 187 farmers and 319 plots were

monitored.

Spot check data We conducted spot checks on one randomly selected field for 50% of

farmers in each sample village. The purpose of these data was to serve as training inputs

to the remote sensing model described below. The spot check protocol was similar to that

for monitoring with a few exceptions. Most importantly, unlike the monitoring visits that

occurred when the farmer informed us they had removed their residue but not yet tilled

the soil, spot checks could not be synchronized with the farmer’s specific harvest and CRM

timing.27 Overall, we conducted 720 spot checks in November 2019.

3.2 Remote sensing measures

Satellite data The data on take-up and monitoring are informative of how many farmers

signed up for the contract and were verified as not burning through monitoring, but not

the rate of burning among non-monitored farmers. Some farmers in the control group may

not have burned, and some farmers in the treatment group who did not enroll or did not

call for monitoring may also not have burned. Thus, our analysis also uses a measure of

burning constructed from high-resolution satellite imagery (see Appendix A.4 and Walker

et al. (2022) for additional detail on the data, data processing and machine learning model).

We use data from two sources, PlanetScope and Sentinel-2.28 PlanetScope data is higher

frequency (roughly every 2-3 days) and is less likely to miss a burning event. This feature

is important because burned fields become observationally similar to unburned fields once

the soil is tilled for Rabi planting. Appendix Figure A.2 depicts this in Sentinel-2 imagery

for one study field. The absence of a persistent visual signature of burning is particularly

problematic in PlanetScope’s visual and near-infrared bands. Sentinel-2 data are collected at

27Other differences were that only one randomly selected plot was visited per farmer and, because the
farmer did not accompany the enumerator, all observation occurred outside of the field. We do not use spot
check data as a primary outcome because to have sufficient statistical power, we would have had to conduct
repeated visits to address the challenge of observing the field after harvest but before tilling. Repeated
monitoring might have directly affected behavior.

28PlanetScope has a 3 meter resolution and Sentinel 20 meter. Other commonly used sensors such as
MODIS and VIIRS are available at lower resolution only, 375 meters to 1 kilometer, and therefore inappro-
priate for the small fields we study.
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a lower frequency (every week to 10 days) but, unlike PlanetScope, they provide information

in the mid-infrared range, which helps separate burned from unburned fields. Thus, the two

sensors complement one another.

Data processing and classification We train a random forest (RF) model with labels

(burn or no-burn) from the monitoring and spot check data, using pixel-level data from the

two sensors. Our labeled set of 681 fields includes burn labels (positives) from the spot

check and monitoring data and no-burn labels (negatives) only from the monitoring data.29

The RF model outputs a pixel-level continuous prediction score ranging from 0 to 1, which

represents the proportion of decision trees that the model classified as burned. We avoid over-

fitting by holding out each field (consisting of many pixels) from the training set, obtaining

a prediction for each held-out pixel. To aggregate pixel-level data to a field-level burning

outcome, we average the predicted score across pixels in a field (omitting perimeter pixels)

and then choose a threshold above which a field is classified as burned. To generate binary

burn estimates for the entire data set, we apply the mean of the trained RF models (recall

we have one trained model for each of the fields in the training set, given the procedure to

avoid over-fitting) to unlabeled pixels, aggregate to the field-level, and apply the classification

thresholds as described in the next paragraph. For consistency with other contract outcomes

(a higher value is an environmental improvement), we invert the burning classification when

estimating treatment effects. Hence, this farmer-level outcome equals zero if a farmer is

predicted to have burned any of his fields.

We present two alternative thresholds: (1) balanced accuracy equalizes prediction accu-

racy for burn and no-burn labels (training data), or equivalently equalizes type I and type II

errors or sensitivity and specificity, and (2) max accuracy maximizes overall model accuracy.

Because burning is more common in our data than not-burning, the max accuracy measure

improves overall accuracy at the expense of accuracy in predicting not-burned, i.e., by relax-

ing the threshold to classify fields as burned. This, however, also increases the likelihood of

false positives (cases of non-burning that are misclassified as burned). The balanced accu-

racy measure avoids this problem by balancing the rate of false positives and false negatives,

29We exclude negative labels collected during spot checks because they indicate no burning in the days
immediately preceding the spot check visit but provide no information about burning outside that window.
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but at some (relatively minor) cost to overall accuracy (by classifying fewer fields as burned,

which increases the scope for false negatives). The tradeoff between these two measures af-

fects the control group mean burning rate: predicted burning is higher in the max accuracy

measure than the balanced accuracy measure by construction. These differences only change

treatment effects if the fields in the part of the distribution between the two thresholds are

disproportionately from the treatment or control groups. We find similar treatment effects

across the two measures.30

The RF model is trained using negative labels that are only available for the treatment

group (and positive labels for both treatment and control groups). This could introduce

bias into the classification if the spectral signature of not-burning is affected by treatment;

if not-burning looks the same in treatment and control, this is not an issue. As one check

on potential bias, Appendix Figure A.3 shows the distributions of the continuous random

forest model output using fields not in the training set. Both for fields classified as burned

and those classified as not-burned, the distributions are similar in the treatment and control

groups. Formal statistical tests for equal distributions, conditional on classified burning

status, confirm that there is no statistical difference.

The balanced accuracy model has an overall accuracy of 78 percent, while the max

accuracy model is necessarily better at 82 percent (see Appendix Table A.2). The difference

is due to 425 fields or 203 farmers (12% of the sample) being classified as not-burned under

the balanced accuracy threshold and burned under the max accuracy threshold. 11% of the

control group, 10% of the standard PES treatment and 15% of the upfront PES treatment

fall between the thresholds, i.e., moving from balanced accuracy to max accuracy re-assigns

their not-burned outcome from 1 to 0.

3.3 Burning and farmer heterogeneity measures

Burning measures We use multiple data sources to measure farmer residue burning, and

consider ancillary outcomes that are likely related to burning. To begin, we use contract

compliance data to create an indicator for whether a farmer requested monitoring and was

30Given that the farmer-level outcome depends on whether a farmer burns any of his fields, differences
between the measures may be more pronounced than at the field level.
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found not to have burned during the monitoring visit. This outcome allows us to compare

the treatment effects of standard PES versus upfront PES. However, because we do not

measure this outcome in the control group, we cannot use it to compare impacts relative to

counterfactual burning.

Second, we use remote sensing measures that construct a predicted not-burning mea-

sure for all farmers. We present two versions of the remote sensing model, as described in

the previous sub-section, which rely on the same underlying imagery and machine learning

models but differ in the threshold used to determine a field-level binary burned/not-burned

outcome.

Finally, we rely on endline survey data for measures of CRM practices among treatment

and control farmers, which include the primary alternatives to burning: balers (ex-situ) and

Happy Seeders (in-situ).

Farmer heterogeneity measures Following our pre-analysis plan, we use baseline data

to create a distrust index and a financial constraints index, which are the two barriers that

motivated us to test the upfront PES contract. The survey questions used to create all

heterogeneity indices and their aggregation into binary variables are discussed in Appendix

A.5. Because our study population had no experience with PES programs, and over 40% had

no experience with CRM equipment, the survey questions focused on farmer trust in general

and overall financial constraints related to agriculture. Both baseline indices thus capture

generalized beliefs rather than specific beliefs related to choices around residue burning. For

instance, when measuring financial constraints, we asked farmers if they could access savings

or loans for agricultural equipment for two different amounts (|5,000 and |10,000). Trust

was measured using questions that asked farmers their level of trust in people in general,

and specific groups (the Punjab Government, their village Panchayat, cooperative society,

NGOs, and financial institutions like banks and insurance companies). In contrast, the

endline survey directly asked treatment group farmers about trust in the PES program, and

financial constraints specific to CRM.

We also construct indices of CRM equipment access, which may affect overall PES pro-

gram take-up or compliance (we did not hypothesize they would differentially affect compli-
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ance with standard versus upfront PES). We construct three sub-indices to measure different

access barriers: informational barriers (i.e., awareness of alternatives to burning and knowl-

edge of where to rent them), CRM equipment access barriers (including delays), and negative

beliefs about the impact of CRM equipment on soil health and agricultural yield.

4 Results

4.1 Estimation strategy

We estimate the following equation:

yij = α + βStandardPESj + γUpfrontPESj + ψXj + ϵij

where yij denotes an outcome for farmer i in village j, and StandardPESj and UpfrontPESj

are binary variables that take the value 1 if village j is assigned to the standard PES treat-

ment and the upfront PES treatment, respectively. Xj are strata fixed effects. Following

our pre-analysis plan, and to increase statistical power, we pool treatment variants (different

payment levels in StandardPESj and different proportions paid upfront in UpfrontPESj).

Standard errors are clustered at the village level. β is the effect of being assigned to the

standard PES treatment, and γ is the effect of assignment to the upfront PES treatment

(each relative to the control group).

Table 1 presents summary statistics and four types of balance tests: for the treatment

(pooling all treatment arms) versus control group, for standard PES (pooling |800 and

|1600 per acre) versus the control group, upfront PES (pooling 25% upfront and 50% up-

front groups) versus the control group, and for upfront PES versus standard PES. In each

comparison, self-reported burning in 2018 is balanced. We observe slight imbalance in mea-

sures of land size and CRM indices; the p-value of the joint F-test is 0.48 between treatment

and control.

Table 1 also provides more details on our respondents. They have significant farming

experience and produce on about five acres of land, on average. The majority of household

income comes from agriculture, with a control group mean agricultural profit of |114,000
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(the median is |58,000).31 At baseline, 68 percent of farmers self-reported burning their fields

in the previous year, though the actual value is likely higher given our screening criteria.

Less than half of the sample, 48%, had previously signed a written contract.

We have no attrition for our main outcomes of PES compliance and remotely-sensed

burning. For the endline survey, Appendix Table A.3 shows a reasonably high response rate

for a phone survey (greater than 80%) but with some differential attrition; the treatment

group was about 5 percentage points less likely to respond than the control. However, there

is no difference in attrition between the standard and upfront PES groups.32 Following Lee

(2009), we report both the point estimates and upper and lower bounds on our estimates for

regressions using endline survey outcomes for treatment and control groups.33 We also test

for whether there was differential attrition across treatment groups by baseline characteristics

or by burning choice during the experiment. The results, presented in Appendix Table A.4,

do not indicate that this is the case.34

4.2 Treatment effects

A. Did farmers take up the PES contract offers?

In Table 2, we examine differences across treatment arms in whether the surveyor found and

offered the farmer the PES contract, as well as whether the farmer was eligible for the offer

(i.e., he had a bank account and had not yet harvested his paddy). These outcomes are zero

by construction in the control group, and they are determined for treatment farmers before

they learned the details of the contracts. Farmers were found in treatment arms at a similar

rate: 87.9% in the upfront PES treatments versus 88.5% in the standard PES treatment

31The baseline agricultural profit measure helps interpret the magnitude of the contract payments; the
median base contract payment of |800 per acre equals |4,000 per farmer (since the average farmer cultivates
5 acres), or about 7% of median agricultural profit.

328% of the sample had invalid numbers, while 4.8% could not be contacted in eight attempts. The
remaining attrition is due to: 1% of the sample didn’t answer the phone, 0.12% had the wrong number,
0.59% refused to talk prior to the consent, 1.2% didn’t consent to the survey, and 0.96% didn’t complete the
survey.

33Lee bounds entail estimating treatment effects after dropping (in turn) the observations with the lowest
and highest outcomes in the less-attrited group, so that the proportion of included observations is equal
across treatment and control. We trim observations from the control group within strata and include strata
fixed effects in the estimation because our randomization is stratified.

34These results are estimated using a single regression that regresses attrition on all baseline characteristics,
treatment status and each of the interactions between the two.
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(column 1). The same is true for eligibility: 83.3% of farmers were eligible in the upfront

PES treatment and 84.4% in the standard PES treatment (column 2).

Next we consider program take-up, which is again zero by construction for control farmers.

Take-up (i.e., whether a farmer signed the PES contract) was high, with around 72% of

farmers in both treatment arms signing the contract.35 Conditional on being found and

being eligible, the probability that a farmer took up the PES program is very high (around

87%). This is consistent with the option value associated with the contract being high in

both treatments (since farmers who choose to burn forgo the conditional payments but face

no penalties). The fact that contract take-up is not higher when the PES contract includes

upfront payment is surprising, but could stem from the fact that farmers were not given the

upfront cash right away. They were asked for their bank account information, and funds

were transferred 2-3 days later. Trust barriers might have similarly deterred take up in the

two treatment arms; farmers may have objected to sharing bank account information or

granting access to their plots for monitoring.

B. Did farmers offered PES contracts reduce their crop residue burning?

Our first measure of not-burning is contract compliance, i.e., whether the farmer called for

monitoring and in the monitoring visit was found in compliance with the contract (no fields

were burned). Table 3, column 1 shows that 8.5% of farmers complied with the contract in

the standard PES group. Compliance in the upfront arm is 10 percentage points higher, at

18%, and equality between the two groups can be rejected with p < 0.01.36 Thus, despite

similar contract take-up rates in the standard and upfront PES treatments, upfront payments

make farmers twice as likely to comply with the contract.

Next, we consider our two remote sensing based measures of whether a farmer burned

any fields.37 Columns 2 and 3 of Table 3 present results for the balanced accuracy and max

accuracy classifications, respectively. As with contract compliance, upfront PES outperforms

35As shown in Appendix Table A.5, the take-up rate was similar across all sub-treatments.
36Treatment effects on the outcome of whether the farmer called for monitoring (regardless of compliance)

follow a similar pattern – 11% of farmers in standard PES called and there is a 10 percentage points higher
likelihood of calling for monitoring in the upfront arm.

37About 18% of the sample had at least one field predicted to be burned and at least one field predicted
not burned. We present plot-level treatment effects in Appendix Table A.6.

20



standard PES, with treatment effects that are similar across the two alternative remote

sensing measures. Relative to the control group, upfront PES increases not-burning by 8-

11.5 percentage points. In contrast, the effects of standard PES relative to the control group

is indistinguishable from zero.38 The latter result implies that standard PES payments were

inframarginal. The farmers who complied with the standard PES contract and received

payment would not have burned their fields even in the absence of the program.

The two remote sensing models differ in their estimate of the not-burning rate in the

control group, which is 20% in the balanced accuracy classification and 9% in the max

accuracy classification. Appendix Figure A.4 shows the control group mean and estimated

treatment effects as the threshold is varied from a lower bound that classifies all true not-

burned as not-burned to an upper bound that classifies all true burned as burned. The

treatment effects are less sensitive to the choice of threshold (middle and bottom panel)

than is the control group mean (top panel). The variability in the estimated control group

mean does not affect the conclusion that the upfront PES arm was effective at lowering

burning, but it does bear on whether the results imply that some farmers left money on the

table. For example, with the higher control group mean estimated in the balanced accuracy

model, the implied rate of not-burning in the upfront villages is 31%, implying that some

farmers in the upfront arm who did not burn also did not call for the conditional payment.39

The max accuracy results, on the other hand, imply that all farmers who did not burn

received the conditional payment, so farmers did not leave money on the table.

Appendix Table A.5 disaggregates the effects by the four treatment arms. The point

estimates for all outcomes other than contract take-up are larger for the upfront PES arms.

Paying more in the standard PES variants (|1,600 versus |800) increased the point estimates

on compliance and the remote sensing based measure, though their difference is statistically

indistinguishable from zero. For both measures, compliance with the |1,600 arm is lower

than with either upfront arm. This is striking given that the upfront contract only pays |800

per acre. Across the two upfront arms (25% upfront versus 50% upfront), it is theoretically

38Treatment effects estimated on our subsample for which we have spot check data are similar in magnitude
(see Appendix Table A.7), but with considerably lower statistical power and a (mechanically) higher control
group mean given that not all burns were detected through a one-time surprise field visit.

39In the endline survey, some farmers reported losing the number to call for monitoring or forgetting when
they were supposed to call.
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ambiguous which should perform better, as increasing the fraction paid upfront meant a

lower reward for compliance; we find similar effects for the two variants.40

In Table 4, we analyze treatment effects on the main ex-situ and in-situ alternatives to

burning: baler and Happy Seeder use, respectively. Increased use of balers – by 10 percentage

points – can explain all of the reduced burning achieved through upfront PES; every farmer

who switched away from burning because of the upfront PES program seems to have switched

to baling their straw. There are no detectable changes in Happy Seeder use.

Consistent with the null effect of standard PES on our remote sensing based burning

measure, we see no difference in CRM usage in the standard PES arm relative to the control

group, suggesting that standard PES had no impact on residue management behavior. In

the second panel, we present Lee bounds to account for differential attrition by treatment

status in the endline survey (from which we derive these results). Consistent with the

point estimates, we only see a statistically significant increase in baler use for the upfront

PES group (the lower and upper bound point estimates are 8.8 and 14.5 percentage points

respectively).

Two important factors cited by farmers as arguments in favor of residue burning are

reducing delays between harvesting and sowing the next crop and agricultural yields. In our

setting, the significant upfront payouts in the upfront PES treatment may also have directly

affected agricultural outcomes. Appendix Table A.8 presents treatment effects on crop yields

for rice and the Rabi crop (which is wheat for 99.6% of the sample), and on delays in sowing

the Rabi crop. Neither treatment impacted these outcomes.

4.3 Why did upfront payments increase farmer PES compliance?

Upfront PES reduces burning more than standard PES. We now examine why offering partial

payment upfront boosted contract effectiveness.

Panel A of Table 5 presents heterogeneous treatment effects by pre-specified baseline in-

dices: a distrust index and a financial constraints index.41 These indices capture generalized

40The results across the two upfront arms diverge more for the max accuracy remote sensing based outcome
than for either the compliance or balanced accuracy outcomes, though differences in the coefficients fall well
within the standard errors around all of the estimates.

41We also use a generalized random forest model to identify baseline variables that explain heterogeneity
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distrust and financial constraints faced by farmers, rather than CRM or PES-specific con-

straints. In both cases, we use a binary measure for being above the index median, or ‘highly

constrained’. Columns 1 and 2 present results using contract compliance as the outcome,

and columns 3 through 6 using remote sensing measures of burning as the outcome. We do

not find any differential impact of the upfront program by either heterogeneity index on any

of the outcomes.42

In addition, in the endline survey, we asked a subset of farmers (63% of the sample)

in the standard and upfront arms about distrust and financial constraints related to CRM

decisions and the PES program.43 To gauge trust in the PES program, we asked: “When I

was deciding how to manage my residue during Kharif 2019, I was sure that J-PAL would

return and pay me the amount owed to me if I did not burn.” We create a binary variable

that equals 1 if farmers answered yes (low constraint), and 0 otherwise. To test for cash

constraints in CRM decisions, we asked farmers how much they agreed with the statement

“When I was deciding how to manage my residue during Kharif 2019, shortage of cash limited

what methods I could choose for residue management.”44 We create a binary variable that

equals 1 if they answered “Shortage of cash was not at all important”, “not very important”

or “somewhat important” and 0 otherwise.45

Panel B of Table 5 presents results using these two endline variables as outcomes.46

in the treatment effect of the |1600 standard PES treatment relative to the control. The four most important
variables determined from this procedure all belong to our trust index. However, when used in a second
step to test heterogeneity in the treatment effect of the upfront PES arms relative to the |800 standard PES
treatment, they are inconsistently signed and imprecisely estimated.

42Like all heterogeneity on observables, this null result could mean that the generalized measures are
not relevant or that our baseline measures lack sufficient sample variability to pick up an effect. Other
mechanisms may also be relevant, such as reciprocity. We are guided by our pre-analysis plan, but note
that reciprocity seems unlikely as a mechanism given the high cost of contract compliance and the lack of
differential endline survey participation by treatment arm.

43We asked these questions of only a subset of farmers because we reduced the survey duration partway
through the sample due to respondent fatigue with a lengthy phone survey.

44Only contract signers were asked about trust, but both were asked about cash shortages. To keep the
sample consistent, we only study contract signers here, but results on monetary constraints are similar if we
include all respondents.

45The other options were that shortage of cash was very important or extremely important in determining
CRM decisions. Alternative classification which classifies cash shortage as being unimportant if the respon-
dent answered “Shortage of cash was not at all important” or “not very important” lead to qualitatively
similar results.

46Note that since there is no differential attrition in the standard versus upfront arms for the endline
survey, Lee bounds are not required.
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Farmers in the upfront arm are nearly 7 percentage points more likely than farmers in the

standard PES arm to say that they trusted that the conditional payment would be made if

they complied. Recall that the difference in compliance between the two contract types is

about 10 percentage points, so the increase in trust represents an economically significant

effect.47 We interpret this result as suggestive evidence that instilling trust was a mechanism

by which upfront PES was more effective than standard PES.

In contrast, farmers in the upfront arm were not more likely to report cash shortages

being unimportant for CRM decision-making. However, this does not necessarily imply

that upfront payments do not affect the ability to pay for CRM equipment. The upfront

amount (which could cover less than half the cost of baler rental) may have been too low to

meaningfully ease this constraint for many farmers.

Appendix Table A.9 presents additional pre-specified heterogeneous treatment effects

that pertain to the overall effect of PES (rather than upfront versus standard PES). These

include information constraints about CRM equipment, barriers to accessing CRM equip-

ment, and beliefs about the negative impact of CRM use on yields, pest prevalence, or

soil health. These heterogeneity results are estimated without the control group, where the

outcome of contract compliance is zero by construction. The correlation between the hetero-

geneity variable in the pooled treatment group and compliance can thus be interpreted as

the heterogeneous treatment effect. Farmers with higher information constraints and more

negative beliefs about burning alternatives are less likely to comply with PES, pooling all of

the treatment arms.

We also test whether program take-up is differential by any of these five pre-specified

indices (liquidity, distrust, information about CRM alternatives, CRM access constraints,

and negative beliefs about burning alternatives). These results are presented in Appendix

Table A.10 and do not indicate that the program had differential take-up by any of these

indices.

47Note that the higher reported trust in the payment among farmers in the upfront PES treatment is not
limited to the compliers in the upfront PES arms; levels of trust do not vary with compliance in this arm.
In contrast, in the standard PES arms, farmers who complied – and received payment – were around 10
percentage points more likely to report a high level of trust in the payment.
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5 Program Costs and Benefits

We present a cost effectiveness comparison across treatments in Table 6. Column 1 shows

the treatment effects for farmer-level payments (zero by construction in the control group).48

The results show that upfront PES pays out more, both because more people comply and

because farmers who sign up yet burn still receive upfront payments. Columns 2 and 4

reproduce the treatment effect on the binary variable of not-burning shown earlier, using the

balanced and max accuracy models, respectively. Note the slightly different results across

the columns, which we return to below.

Column 3 shows the cost per additional unburned acre based on the balanced accuracy

model, calculated by dividing the estimates in column 1 by the estimates in column 2 for

each treatment. (Figure A.5 shows the results by treatment arm.) The estimated effect

on burning of standard PES is very close to zero, resulting in a high cost per unburned

acre (|13,441). Upfront PES is more cost effective than standard PES, according to the

point estimates, despite the higher payment per acre; the cost per averted acre of burning is

|2,695 ($34). However, we cannot reject equality across the arms due to the very imprecise

estimate for standard PES’s cost per unburned acre (which stems from the standard error

for standard PES in column 2 being much larger than the estimated coefficient).

For the max accuracy, the tradeoff between treatment effects and cost effectiveness is more

apparent (column 5). For this measure, the effect of standard PES on burning (column 4)

is small and statistically imprecise, but considerably larger than with the balanced accuracy

measure. The treatment effect on not-burning from upfront PES is also smaller using the

max accuracy classification than the balanced accuracy classification. Thus, upfront PES is

“only” four times as effective as standard PES. Because upfront PES entails three times as

large a payment per acre as standard PES, the cost-effectiveness gap between the contract

types is not as stark: Upfront PES has a cost of |4050 ($51) per unburned acre, compared

to |5157 ($64) for standard PES (column 5).

Next, we compare these costs to the benefits of reducing crop burning. Lan et al. (2022)

48We exclude the cost of monitoring contract compliance because it is sensitive to program scale and
specific protocols around monitoring. Monitoring costs for our program were roughly |300/field, or less than
|100/acre, which is small in comparison to the PES payments.
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combine satellite data on fire intensity with air transport models to estimate that 86,000

premature deaths were caused by crop residue burning in India in 2018, 53.5% of which

can be attributed to Kharif burning in Punjab. Estimates of the Value of a Statistical Life

(VSL) for India range from $700,000 (Majumder et al., 2018) to 5.6 million (Madheswaran,

2007). Using the lower bound of this range as a conservative estimate, this implies $32

billion of annual damages. Kumar et al. (2019) estimates that 66%, or around 4 million

acres, of Punjab’s (non-basmati) paddy was burned in the Kharif season of 2018, which

implies damages of $8,000 per acre (|632,000). These mortality damages are 150 to 230

times the per acre cost of reducing burning through PES with upfront payment.49

To put this cost per life saved in perspective, we compare it to other pollution abatement

options. Coal-fired power plants are a major source of particulate emissions in India, and

installing SO2 scrubbers lowers emissions of fine particulate matter. According to the Global

Burden of Disease 2018, thermal power claims 84,650 lives in India each year. Installing

scrubbers avoids 72% of deaths in the first year (Cropper et al., 2019), which would save

60,948 lives. India has 204 GW of coal capacity (Ministry of Power, 2022); on average,

installing scrubbers in a 500 MW plant would save 150 lives per year, and costs about

$1.2 billion over 20 years, or 60 million per year annualized. Assuming no discounting and

constant benefits for the lifetime of scrubbers, the cost per life saved is around $400,000. For

comparison, the cost per life saved from our most cost effective treatment is $2,930.50 Thus,

while several abatement opportunities have benefits that outweigh costs in India, residue

burning reduction has the potential to save lives at a much lower cost.

6 Conclusion

Identifying low-cost pollution abatement opportunities allows for more efficient use of limited

environmental protection budgets. Even if promising opportunities are identified, market

imperfections and weak institutions can undermine the efficacy of policies aimed at these

49We use estimates of percentage of paddy burned from Kumar et al. (2019), who use satellite-based active
fire products to quantify total rice area burned in Punjab in the Kharif season of 2018.

50Using above assumptions, crop residue burning causes 0.02 deaths per acre annually. Reducing one acre
of burning costs |2695/acre, or $34/acre, which implies $2,930 per life saved.
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abatement opportunities.

We show that crop residue burning, which has significant environmental and human

health costs, can be reduced through well-designed PES payments. In particular, program

design that takes institutional constraints and farmer concerns into account can significantly

improve efficacy. Providing a portion of the contract payment upfront results in larger

reductions in burning than providing the entire payment after participants have completed

costly behavior change. Despite higher “wasted” payments (to farmers who continue to

burn), PES with upfront payments is cost effective, resulting in burning reductions that

provide benefits far in excess of their cost.

Scaling up PES contracts to avoid burning poses some challenges. First, the monitoring

protocols that we implemented were not designed for scale. Viable approaches to large-

scale monitoring, such as remote sensing, are likely to increase contract risk because of

measurement error (though different forms of contractual risks may exist with scaled-up in-

person monitoring as well). Second, equipment to manage crop residue is still scarce, and

PES at scale will increase demand for this equipment, raising the cost of not burning. For

example, if all farmers began renting balers, the rental price of balers would rise unless the

supply of rental equipment in a village is elastic.

There are also reasons for optimism. The roll-out of a large-scale PES program would

create incentives for innovation in better CRM equipment or rental market efficiency. Dy-

namic incentives — in the form of tying future eligibility to verified not burning — could

reduce the cost of providing upfront payments. The need for upfront payments also might

become less important as trust in being paid grows. Finally, PES programs are appealing

because they can be implemented by organizations that want to reduce fires but lack the

authority to levy fines. The enormity of the environmental damage caused by crop residue

burning in India justifies such an investment and also highlights the need for further research

to find viable solutions to this problem.

27



References

Agricultural and Processed Food Products Export Development Authority (2018). Basmati

acreage yield estimation 2018. Basmati Export Development Foundation.

Aker, J. C. and K. Jack (2021). Harvesting the rain: The adoption of environmental tech-

nologies in the Sahel. Working Paper 29518, National Bureau of Economic Research.

Akresh, R., D. De Walque, and H. Kazianga (2013). Cash transfers and child schooling:

Evidence from a randomized evaluation of the role of conditionality. Policy Research

Working Paper 6340, The World Bank.

Attanasio, O. P., V. Oppedisano, and M. Vera-Hernández (2015). Should cash transfers be

conditional? Conditionality, preventive care, and health outcomes. American Economic

Journal: Applied Economics 7 (2), 35–52.

Badarinath, K. V. S., T. R. K. Chand, and V. K. Prasad (2006). Agriculture crop residue

burning in the Indo-Gangetic plains: A study using IRS-P6 AWiFS satellite data. Current

Science 91 (8), 1085–1089.
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Figure 1: Experimental Design
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N = 315 (31 villages)

Note: Treatments assigned at the village level. See text for additional detail.
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Figure 2: Timeline
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Table 1: Summary Statistics and Balance

N
Control Treatment Standard Upfront Upfront

Mean SD
vs

Control
vs

Control
vs

Control
vs Stan-
dard

(1) (2) (3) (4) (5) (6) (7)

Panel A: Demographics
Age (years) 1668 48.675 12.732 -0.158 -0.448 0.124 0.610

(0.751) (0.816) (0.825) (0.653)
Total experience in agriculture (years) 1668 28.055 13.144 -0.184 -0.452 0.078 0.522

(0.788) (0.860) (0.874) (0.732)
Highest educational class passed 1658 7.213 4.197 -0.147 -0.200 -0.096 0.114

(0.228) (0.265) (0.270) (0.283)
1(Ever signed a written contract) 1440 0.483 0.500 -0.048 -0.049 -0.048 0.001

(0.039) (0.044) (0.044) (0.041)

Panel B: Income
Total income 1602 125.694 172.588 -4.655 1.060 -10.190 -10.352

(11.386) (12.886) (13.798) (14.493)
Non-agricultural income 1455 18.076 66.407 -1.393 -2.545 -0.277 3.150

(4.563) (5.136) (6.630) (8.084)
Total agricultural profit 1521 114.177 155.748 -2.759 4.674 -9.905 -14.483

(11.246) (12.700) (12.865) (12.426)
Total area of land in acres (measured) 1668 4.986 2.816 0.327 0.350 0.304 -0.049

(0.173)∗ (0.203)∗ (0.188) (0.181)
Paddy production in 1000kg 1513 13.250 9.593 0.684 1.069 0.308 -0.768

(0.625) (0.736) (0.700) (0.722)

Panel C: Heterogeneity variables
Liquidity constraints index 1668 0.504 0.500 0.011 0.020 0.003 -0.012

(0.039) (0.042) (0.044) (0.039)
Distrust index 1655 0.476 0.500 0.043 0.058 0.029 -0.032

(0.035) (0.039) (0.040) (0.034)
CRM information constraints index 1676 0.444 0.497 0.026 0.062 -0.009 -0.076

(0.034) (0.040) (0.039) (0.041)∗

CRM access constraints index 1651 0.445 0.497 0.076 0.078 0.073 -0.009
(0.033)∗∗ (0.036)∗∗ (0.038)∗ (0.034)

CRM negative beliefs index 1676 0.500 0.501 0.069 0.095 0.043 -0.060
(0.035)∗∗ (0.039)∗∗ (0.038) (0.032)∗

Panel D: Burning
1(Burned paddy residue in 2018) 1576 0.684 0.465 0.025 0.044 0.006 -0.037

(0.034) (0.037) (0.039) (0.035)

P-value of joint F-test 0.475 0.482 0.693 0.808

Note: ***(**)(*) indicates significance at the 1%(5%)(10%) level. Standard errors reported in parentheses.
Columns 2 and 3 show the summary statistics for the control group in the baseline. Column 3 shows the
coefficient from regressing the baseline variable on a treatment dummy (taking value 1 if the respondent was
in any treatment group). Columns 5 and 6 are the coefficients from regressing the baseline variable on two
treatment dummies (taking the value 1 if the respondent was in the standard PES treatment, and taking value
1 if the respondent was in upfront PES treatment, respectively). Column 7 shows the coefficient from regressing
the baseline variable on a dummy taking value 1 if the respondent was in the upfront payment treatment.
Regressions in columns 4, 5 and 6 use the control group as the comparison group. Regressions in column 7 uses
the standard PES group as the comparison group. All regressions cluster standard errors at the village level
and include strata fixed effects. All income variables relate to income derived in the past 12 months and are
measured in |1000. All index variables in Panel C are binary. There are 1,668 observations in the baseline; 486
observations for the control group and 1,182 observations for the treatment groups.
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Table 2: Contract Eligibility and Take-Up

Farmer
Found

Farmer
Eligible

Contract
Take-Up

(1) (2) (3)

Standard PES 0.885 0.844 0.726
(0.014)∗∗∗ (0.019)∗∗∗ (0.023)∗∗∗

Upfront PES 0.879 0.833 0.718
(0.011)∗∗∗ (0.014)∗∗∗ (0.022)∗∗∗

p-val: Standard PES = Upfront
PES

0.720 0.627 0.798

Control mean 0.000 0.000 0.000
Standard PES mean 0.887 0.852 0.741
Upfront PES mean 0.880 0.837 0.728
N 1668 1668 1668

Note: ***(**)(*) indicates significance at the 1%(5%)(10%) level. Standard errors in
parentheses clustered at the village level. Strata fixed effects included. “Farmer Found”
is a dummy variable taking the value 1 if the respondent was available during the in-
tervention. “Farmer Eligible” is a dummy variable taking the value 1 if the respondent
was available during the intervention and had a bank account. “Contract Take-Up” is a
dummy variable taking the value 1 if the respondent signed a contract to participate in
the PES program.
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Table 3: Contract Compliance and Not Burning

Compiled Not Burned Not Burned
with (Balanced (Maximum

Contract Accuracy) Accuracy)
(1) (2) (3)

Standard PES 0.085 0.008 0.020
(0.015)∗∗∗ (0.042) (0.030)

Upfront PES 0.183 0.115 0.077
(0.020)∗∗∗ (0.042)∗∗∗ (0.032)∗∗

p-val: Standard PES = Upfront PES 0.000 0.008 0.071
Control mean 0.000 0.202 0.091
Standard PES mean 0.084 0.198 0.098
Upfront PES mean 0.185 0.313 0.161
N 1668 1664 1664

Note: ***(**)(*) indicates significance at the 1%(5%)(10%) level. Standard errors in parentheses clustered at
the village level. Strata fixed effects included. “Complied with Contract” is a dummy variable taking the value
1 if the respondent called to request monitoring of his plots, and monitoring led to the conclusion that the
respondent complied with the contract i.e. did not burn his paddy residue. “Not Burned” takes value 1 if the
farmer did not burn any of his plots, and 0 otherwise. Column 2 classifies burning to balance type I and type II
errors; column 3 classifies burning to maximize overall model accuracy.
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Table 4: Crop Residue Management Methods

Baler Seeder
(1) (2)

Standard PES -0.010 -0.020
(0.037) (0.023)

Upfront PES 0.096 0.013
(0.039)∗∗ (0.026)

p-val: Standard PES = Upfront PES 0.014 0.157
Control mean 0.199 0.102
Standard PES mean 0.171 0.087
Upfront PES mean 0.295 0.112
N 1387 1387

Lee Bounds

Standard PES
Lower bound -0.025 -0.028

(0.027) (0.021)
Upper bound 0.036 0.047

(0.025) (0.017)∗∗∗

Upfront PES
Lower bound 0.088 0.006

(0.030)∗∗∗ (0.022)
Upper bound 0.145 0.068

(0.028)∗∗∗ (0.019)∗∗∗

Note: ***(**)(*) indicates significance at the 1%(5%)(10%) level. Stan-
dard errors in parentheses clustered at the village level. Strata fixed effects
are included. “Baler” is a dummy variable taking value 1 if the farmer
reported in the endline that he used a baler. “Seeder” is a dummy vari-
able taking value 1 if the farmer reported in the endline that he used a
Happy Seeder or a Super Happy Seeder. The second panel shows the Lee
bounds for the treatment effects by treatment group. For details on the
Lee bounds, see footnote 33.
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Table 5: Liquidity and Distrust as Moderators of the Treatment Effects

Panel A: Liquidity Constraints and Distrust

Outcome variable: Complied Burned Burned
Type of constraint: with Contract (Balanced Accuracy) (Maximum Accuracy)

Distrust Liquidity Distrust Liquidity Distrust Liquidity
(1) (2) (3) (4) (5) (6)

Upfront PES 0.114 0.088 0.031 0.030 0.054 0.051
(0.030)∗∗∗ (0.029)∗∗∗ (0.032) (0.033) (0.029)∗ (0.029)∗

Highly constrained 0.030 0.010 0.021 0.007 0.003 0.014
(0.024) (0.022) (0.029) (0.035) (0.025) (0.030)

Upfront PES × Highly constrained -0.032 0.018 -0.037 -0.032 -0.025 -0.022
(0.036) (0.038) (0.039) (0.048) (0.039) (0.042)

Standard PES mean 0.083 0.084 0.167 0.167 0.104 0.105
Upfront PES mean 0.185 0.185 0.174 0.174 0.143 0.142
N 1172 1182 1168 1178 1168 1178

Panel B: Trust in Payment and Importance of Cash Shortage

Outcome variable: Trusted Payment Cash Shortage Not Important
(1) (2)

Upfront PES 0.068∗∗ 0.038
(0.028) (0.043)

Standard PES mean 0.854 0.441
N 580 584

Note: ***(**)(*) indicates significance at the 1%(5%)(10%) level. Standard errors in parentheses clustered at the village level. Strata fixed
effects are included. Panel A: “Type of constraint” is the heterogeneity variable which is indicated in the second row of the table. “Liquidity”
is an index indicating liquidity constraints, including constrained access to cash and loans. “Distrust” is an index indicating the farmer’s
distrust in categories of people and organizations. All indices are binary and take value 1 if the farmer’s constraints are larger than or equal to
the median. The outcome variable is indicated in the top row: “Complied with Contract” is a dummy variable taking the value 1 if the
monitoring led to the conclusion that the respondent complied with the contract i.e. did not burn his paddy residue. The comparison group is
the standard PES group. Panel B: “Trusted Payment” takes value 1 if the respondent trusted that the payment by J-PAL will be made if they
did not burn their paddy residue, and 0 otherwise. “Cash Shortage not Important” takes the value 1 if the respondent declared that cash
shortage was not an important factor when deciding which crop residue management method to use, and 0 otherwise. These outcome variables
are from the endline survey. The control group is excluded from the sample. The comparison group is the standard PES treatment group.
Only those who signed a contract i.e. took up the treatment are included in the sample.
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Table 6: Cost Effectiveness

Balanced Accuracy Maximum Accuracy

Amount
Not

Burned

Cost per
Not

Burned

Cost per
Paid per Unburned Unburned
Acre Acre Acre
(1) (2) (3) (4) (5)

Standard PES 105.6 0.008 13440.5 0.020 5156.5
(21.7)∗∗∗ (0.042) (71152.0) (0.030) (7156.0)

Upfront PES 310.5 0.115 2695.0 0.077 4051.3
(15.4)∗∗∗ (0.042)∗∗∗ (948.7)∗∗∗ (0.032)∗∗ (1595.0)∗∗

p-val: Standard PES
= Upfront PES

0.000 0.008 0.879 0.071 0.864

N 1667 1664 1664

Note: ***(**)(*) indicates significance at the 1%(5%)(10%) level. Standard errors in parentheses clustered
at the village level. Strata fixed effects are included. “Amount Paid per Acre” is the per acre payment in
| that the farmer received. This includes the amount paid upfront for those in the upfront PES treatment,
plus the amount paid conditional on compliance for those in the Upfront and standard PES treatment. “Not
Burned” takes the value 1 if the farmer did not burn any of their plots, and 0 otherwise, and matches the
estimates in Table 3. “Cost per Unburned Acre” is the “Amount Paid per Acre” divided by the “Cost per
Unburned Acre” (column 1 divided by column 2 or column 4). Standard errors in columns 3 and 5 are
calculated using the delta method.
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Appendices

A.1 Appendix Tables and Figures

Table A.1: Comparison of Study Sample, Cooperative Listing, and Census Sample

Census
Cooperative
Members

Study
Eligible

Study
Enrolled

Diff
Coop. -
Census

Diff
Coop. -
Study

(1) (2) (3) (4) (5) (6)
Age (years) 46.79 46.99 46.53 48.34 0.20 1.35

(14.31) (14.31) (14.53) (12.82) [0.85] [0.54]
Total experience in agriculture (years) 25.66 26.29 25.05 28.92 0.63 2.63

(14.58) (14.72) (14.25) (13.39) [0.54] [0.26]
Total area of paddy land in acres (reported) 7.71 7.99 5.54 5.26 0.28 -2.73∗∗∗

(8.03) (7.69) (2.93) (2.47) [0.62] [0.00]
1(Knowledge of CRM techniques) 0.87 0.89 0.86 0.79 0.02 -0.10

(0.33) (0.32) (0.35) (0.41) [0.50] [0.16]
1(Tried a CRM technique (oth. th. burning)) 0.90 0.90 0.85 0.74 -0.00 -0.16∗

(0.30) (0.31) (0.36) (0.45) [0.89] [0.04]
Distrust index excluding distrust in family (continuous) -0.01 -0.32 -0.03 0.80 -0.31 1.12

(3.49) (3.43) (3.57) (3.92) [0.20] [0.10]
1(Aware of government PES program) 0.37 0.36 0.38 0.31 -0.01 -0.06

(0.48) (0.48) (0.49) (0.47) [0.80] [0.57]
1(Applied to government PES program 2019) 0.19 0.18 0.16 0.19 -0.01 0.01

(0.40) (0.39) (0.37) (0.40) [0.68] [0.91]
Observations 479 339 190 38

Note:***(**)(*) indicates significance at the 1%(5%)(10%) level. Standard deviations reported in parentheses and standard errors reported
in brackets. Column 1 includes the sample of respondents in the census survey; column 2 includes the subgroup of participants in the census
survey who are part of the local farmers’ Cooperative Society; column 3 restricts the census sample to those respondents who would have
been eligible for the baseline survey of the RCT; column 4 includes the sample of census respondents in the RCT. Columns 1 to 4 are the
means in the samples, and columns 5 and 6 are the differences between the means.

A.1



Table A.2: Remote Sensing Model Accuracy in
Holdout Sample

Not Burned

Balanced
Accuracy

Maximum
Accuracy

(1) (2)

Mean accuracy 0.78 0.82
False burn 0.08 0.13
False no burn 0.14 0.05
True burn 0.51 0.59
True no burn 0.27 0.22
No burn accuracy 0.76 0.63
Burn accuracy 0.79 0.92

Note: Accuracy statistics for remote sensing measures
of burning, using different classifications thresholds. The
true/false burn/no-burn rows show counts of the number of
fields in each category. N = 681.

Table A.3: Attrition from the Endline Survey

Attrition
(1)

Standard PES 0.051
(0.025)∗∗

Upfront PES 0.044
(0.025)∗

p-val: Standard PES = Upfront PES 0.786
Control group mean 0.130
Standard PES group mean 0.187
Upfront PES group mean 0.182
N 1668

Note: ***(**)(*) indicates significance at the 1%(5%)(10%)
level. Standard errors in parentheses clustered at the village
level. Strata fixed effects are included. The outcome variable
is a dummy that takes the value 1 if the respondent attrited
from the endline.
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Table A.4: Heterogeneity of Attrition from the Endline Survey (one regression)

Age
Agric.
Exp.

Educ.

Ever
Signed
Con-
tract

Income

Non-
Agric.
In-

come

Agric.
Rev-
enue

Land
Area

Paddy
Prod.

Financial
Const.

Distrust
Info.
Const.

Access
Const.

Neg.
Beliefs

Burned
Paddy
Residue

in
2018

Not
Burned
(Bal-
anced)

Not
Burned
(Maxi-
mum)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17)

Standard 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096
(0.209) (0.209) (0.209) (0.209) (0.209) (0.209) (0.209) (0.209) (0.209) (0.209) (0.209) (0.209) (0.209) (0.209) (0.209) (0.209) (0.209)

Upfront -0.033 -0.033 -0.033 -0.033 -0.033 -0.033 -0.033 -0.033 -0.033 -0.033 -0.033 -0.033 -0.033 -0.033 -0.033 -0.033 -0.033
(0.197) (0.197) (0.197) (0.197) (0.197) (0.197) (0.197) (0.197) (0.197) (0.197) (0.197) (0.197) (0.197) (0.197) (0.197) (0.197) (0.197)

Het. Var. -0.001 0.000 0.004 0.037 0.001 0.007 -0.001 0.003 0.004 0.054 -0.002 0.031 0.007 -0.043 -0.021 -0.064 0.212
(0.003) (0.003) (0.004) (0.036) (0.001) (0.003) (0.002)* (0.009) (0.003) (0.042) (0.035) (0.031) (0.043) (0.038) (0.054) (0.042) (0.092)

Standard x Het. Var. 0.003 -0.002 -0.011 0.022 0.004 -0.013 -0.000 -0.012 -0.005 0.008 0.060 0.002 -0.049 0.061 0.011 -0.027 -0.127
(0.005) (0.004) (0.007) (0.055) (0.002) (0.004)** (0.002)***(0.013) (0.004) (0.056) (0.055) (0.046) (0.06) (0.063) (0.072) (0.07) (0.126)

Upfront x Het. Var. 0.001 0.001 0.003 -0.013 -0.000 -0.008 0.001 -0.003 -0.002 0.024 -0.058 0.019 -0.032 0.031 0.060 0.071 -0.149
(0.004) (0.004) (0.006) (0.053) (0.002) (0.004) (0.002)* (0.012) (0.004) (0.058) (0.049) (0.05) (0.058) (0.054) (0.071) (0.072) (0.121)

P-value test
Standard x Het. Var.
= Upfront x Het. Var. 0.705 0.576 0.066 0.545 0.096 0.060 0.205 0.465 0.401 0.767 0.033 0.736 0.758 0.641 0.457 0.226 0.852
Control group mean 0.124 0.124 0.124 0.124 0.124 0.124 0.124 0.124 0.124 0.124 0.124 0.124 0.124 0.124 0.124 0.124 0.124
Standard group mean 0.192 0.192 0.192 0.192 0.192 0.192 0.192 0.192 0.192 0.192 0.192 0.192 0.192 0.192 0.192 0.192 0.192
Upfront group mean 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180 0.180
N 1112 1112 1112 1112 1112 1112 1112 1112 1112 1112 1112 1112 1112 1112 1112 1112 1112

Note: ***(**)(*) indicates significance at the 1%(5%)(10%) level. Standard errors in parentheses clustered at the village level. Strata fixed effects are included. “Standard” is the standard
PES group and “Upfront” is the upfront payment PES group. The outcome variable is a dummy that takes the value 1 if the respondent attritted from the endline. Het. Var. is the
heterogeneity variable. The column titles indicate of which heterogeneity variable the coefficients are displayed in the column. “Agric. Exp.” refers to the total experience in agriculture
(years). “Educ.” refers to the highest educational class passed. “Ever Signed Contract” is a dummy taking value 1 if the farmer ever signed a written contract before and 0 otherwise.
“Income” refers to the total income in |’s in the past 12 months. “Non-Agric. Income” refers to non-agricultural income in |in the past 12 months. “Agric. Revenue” refers to the total revenue
from agriculture in 1000 |. “Land Area” refers to the total area of land in acres. “Paddy Prod.” refers to the paddy production in 1000kg. “Financial Const.” refers to a financial constraints
index. “Distrust” refers to an index indicating the farmer’s distrust in categories of people and organizations. “Info. Const.” refers to a CRM information constraints index. “Access Const.”
refers to a CRM access constraints index. “Neg. Beliefs” refers to a CRM negative beliefs index. “Not Burned (Balanced)” refers to the remote sensing measure of not-burning using the
balanced accuracy threshold, and “Not Burned (Maximum)” refers to the remote sensing measure of not-burning using the max accuracy threshold.
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Table A.5: Treatment Effects Disaggregated by Subtreatment

Not Burned

Contract
Take-Up

Complied
with

contract

Balanced
Accuracy

Max
Accuracy

(1) (2) (3) (4)

800/acre 0.743 0.068 -0.028 0.007
(0.030)∗∗∗ (0.016)∗∗∗ (0.046) (0.033)

1600/acre 0.707 0.104 0.048 0.036
(0.036)∗∗∗ (0.025)∗∗∗ (0.053) (0.038)

800/acre with 25% Upfront 0.737 0.177 0.114 0.056
(0.030)∗∗∗ (0.029)∗∗∗ (0.048)∗∗ (0.032)∗

800/acre with 50% Upfront 0.702 0.189 0.115 0.094
(0.029)∗∗∗ (0.029)∗∗∗ (0.053)∗∗ (0.046)∗∗

p-val: 800/acre = 1600/acre 0.441 0.219 0.167 0.461
p-val: 800/acre = 800/acre with 25% Upfront 0.885 0.001 0.006 0.170
p-val: 800/acre = 800/acre with 50% Upfront 0.310 0.000 0.008 0.059
p-val: 1600/acre = 800/acre with 25% Upfront 0.510 0.051 0.249 0.617
Control mean 0 0 0 0
N 1668 1668 1664 1664

Note:***(**)(*) indicates significance at the 1%(5%)(10%) level. Standard errors in parentheses clustered at the village
level. Strata fixed effects included. “Contract Take-Up” is a dummy variable taking the value 1 if the respondent signed
a contract to participate in the PES program. “Complied with Contract” is a dummy variable taking the value 1 if
the monitoring led to the conclusion that the respondent complied with the contract i.e. did not burn any fields. “Not
Burned” takes value 1 if the farmer did not burn any of his plots, and 0 otherwise, using the balanced accuracy which
classifies burning to balance type I and type II errors. “800/acre” is the standard PES group receiving |800 per acre
conditional on not burning. “1600/acre” is the standard PES group receiving |1600 per acre conditional on not burning.
“800/acre with 25% Upfront” is the upfront PES group receiving |800 per acre of which they receive 25% unconditionally
upfront and 75% conditional on not burning. “800/acre with 50% Upfront” is the upfront PES group receiving |800 per
acre of which they receive 50% unconditionally upfront and 50% conditional on not burning.
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Table A.6: Treatment Effects on Remote Sensing Not-Burning Measure (Plot
Level)

Not Burned

Balanced
Accuracy

Maximum
Accuracy

(1) (2)

Standard PES 0.003 0.022
(0.046) (0.036)

Upfront PES 0.123 0.101
(0.045)∗∗∗ (0.036)∗∗∗

p-val: Standard PES = Upfront PES 0.005 0.023
Control group mean 0.296 0.150
Standard PES mean 0.284 0.154
Upfront PES mean 0.432 0.265
N 2875 2875

Note: ***(**)(*) indicates significance at the 1%(5%)(10%) level. Standard errors in
parentheses clustered at the village level. Strata fixed effects are included. Plot level
regressions are weighted by the inverse of the number of plots the farmer has. “Not
Burned” takes value 1 if the farmer did not burn any of his plots, and 0 otherwise. Column
1 classifies burning to balance type I and type II errors; column 2 classifies burning to
maximize overall model accuracy.

Table A.7: Treatment Effects Based on Spot Checks

Not Burned
(1)

Standard PES 0.014
(0.077)

Upfront PES 0.105
(0.073)

p-val: Standard PES = Upfront PES 0.233
Control mean 0.371
Standard PES mean 0.364
Upfront PES mean 0.456
N 715

Note: ***(**)(*) indicates significance at the 1%(5%)(10%)
level. Standard errors in parentheses clustered at the village
level. Strata fixed effects are included. “Not Burned” takes
value 1 if the farmer did not burn any of his plots according
to the spot checks, and 0 otherwise.
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Table A.8: Effects on Agricultural Yield and Sowing Delays

Paddy Yield Wheat Yield Days
(1) (2) (3)

Standard PES -0.026 -0.013 -0.217
(0.039) (0.015) (0.643)

Upfront PES -0.066 0.008 -0.120
(0.045) (0.015) (0.627)

p-val: Standard PES = Upfront PES 0.356 0.151 0.881
Control mean 1.249 0.745 18.364
Standard PES mean 1.237 0.736 17.943
Upfront PES mean 1.194 0.756 18.380
N 1367 1378 1386

Lee Bounds

Standard PES
Lower bound -0.103 -0.035 -1.032

(0.037)∗∗∗ (0.013)∗∗∗ (0.552)∗

Upper bound 0.037 0.008 0.320
(0.037) (0.015) (0.524)

Upfront payment PES
Lower bound -0.113 -0.013 -0.937

(0.037)∗∗∗ (0.010) (0.532)∗

Upper bound 0.005 0.027 0.425
(0.037) (0.012)∗∗ (0.505)

Note: ***(**)(*) indicates significance at the 1%(5%)(10%) level. Standard errors in parentheses
clustered at the village level. Strata fixed effects are included. “Paddy Yield” is a variable indicating
the amount of paddy produced in Kharif 2019 (log of 1000 kg per acre). “Wheat Yield” is a variable
indicating the amount of wheat produced in Rabi 2020 (log of 1000 kg per acre). “Days” is a variable
indicating the number of days after the paddy harvest that passed before the farmer started sowing
the Rabi crop. The second panel shows the Lee bounds for the treatment effects by treatment group.
For details on the Lee bounds, see footnote 33.
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Table A.9: Heterogeneity of Pooled Treatment Effects on Contract Compliance by CRM
Equipment Constraints

Outcome variable: Complied with Contract

Type of constraint:
Information
Constraints

Access Constraints
Negative Beliefs
about Burning
Alternatives

(1) (2) (3)

Highly constrained -0.063 -0.004 -0.040
(0.019)∗∗∗ (0.024) (0.020)∗∗

Pooled PES mean 0.135 0.136 0.135
N 1182 1168 1182

Note: ***(**)(*) indicates significance at the 1%(5%)(10%) level. Standard errors in parentheses clustered
at the village level. Strata fixed effects are included. The row labled “Type of constraint” indicates the
heterogeneity variable: “Information Constraints” is an index indicating the farmer’s lack of knowledge about
CRM equipment. “Access Constraints” is an index indicating the farmer’s difficulties in accessing CRM
equipment. “Negative Beliefs about Burning Alternatives” is an index indicating the strength of the farmer’s
negative beliefs about the impact of CRM equipment on soil health and yield as compared to burning. All
indices are binary and take value 1 if the farmer’s constraints are larger than or equal to the median. The
outcome variable is indicated in the top row: “Complied with Contract” is a dummy variable taking the value
1 if the monitoring led to the conclusion that the respondent complied with the contract i.e. did not burn his
paddy residue.
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Table A.10: Heterogeneity of Treatment Effects on Contract Take-Up

Outcome variable: Program Take-Up

Type of constraint: Liquidity Distrust Information Access

Negative
Beliefs

about Al-
ternatives

(1) (2) (3) (4) (5)

Upfront PES 0.004 -0.018 0.011 -0.014 -0.019
(0.040) (0.041) (0.041) (0.042) (0.045)

Highly constrained 0.020 0.024 -0.057 -0.020 -0.041
(0.036) (0.042) (0.047) (0.030) (0.046)

Upfront PES × Highly constrained -0.015 0.035 -0.044 0.015 0.023
(0.051) (0.059) (0.058) (0.048) (0.061)

Pooled PES mean 0.734 0.735 0.734 0.735 0.734
N 1182 1172 1182 1168 1182

Note: ***(**)(*) indicates significance at the 1%(5%)(10%) level. Standard errors in parentheses clustered
at the village level. Strata fixed effects are included. The row labled “Type of constraint” indicates the
heterogeneity variable: “Liquidity” is an index indicating liquidity constraints, including constrained access
to cash and loans. “Distrust” is an index indicating the farmer’s distrust in categories of people and or-
ganizations. “Information” is an index indicating the farmer’s lack of knowledge about CRM equipment.
“Access” is an index indicating the farmer’s difficulties in accessing CRM equipment. “Negative Beliefs
about Alternatives” is an index indicating the strength of the farmers negative beliefs about the impact of
CRM equipment on soil health and yield as compared to burning. All indices are binary and take value 1 if
the farmer’s constraints or strength of beliefs is larger than or equal to the median. The outcome variable
is indicated in the top row of the table: “Program Take-Up” is a dummy variable taking the value 1 if the
respondent signed a contract to participate in the PES program. The comparison group is the standard PES
group.
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Figure A.1: Time Trends in Fires Based on MODIS Satellite Data

Note: Fire counts from September to December by year, based on modis imagery. Left panel shows the
state of Punjab; right panel shows study districts. The line at 2015 indicates the introduction of the
burning ban; the line at 2017 indicates the introduction of the two-year CRM subsidy.
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Figure A.2: Visual Signs of Burning in Imagery: Example

Around harvest time Just after burning

One week after burning

Note: Imagery from Sentinel-2 showing a study field.
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Figure A.3: Distribution of Random Forest Predictions by Treatment

Note: The left panel shows the distribution of the continuous remote sensing measure of not-burning for
the plots classified as having been burned. The right panel shows the distribution of the same measure for
plots classified as not having been burned. The classification uses the balanced accuracy, and restricts to
plots not included in the training data. The continuous remote sensing measure ranges from 0 to 1, where
higher values mean that it is more likely that the plot has not been burned.
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Figure A.4: Robustness of Treatment Effects on Not Burning

Note: The graphs show the control mean and treatment effects for binary remote sensing measures of
not-burning based on different classification thresholds. The classification thresholds are indicated on the
x-axis. The binary remote sensing measures of not-burning take value 1 if the farmer did not burn any of
his plots, and 0 otherwise. The first graph shows the mean of the remote sensing measure of not-burning in
the control group. The second graph shows the treatment effects on not-burning in the Standard PES
treatment arm. The third graph shows the treatment effects on not-burning in the Upfront PES treatment
arm. The two red lines in the second and third graph indicate the thresholds used for the remote sensing
measures of not-burning with balanced accuracy which classifies burning to balance type I and type II
errors, and with maximum accuracy which classifies burning to maximize overall model accuracy. The
remote sensing measure of not-burning with balanced accuracy uses a threshold of 56 and the one with
maximum accuracy uses a threshold of 65.
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Figure A.5: Cost Effectiveness by Subtreatment

Note: Coefficients on top of bars. ***(**)(*) indicates significant difference between coefficients at the
1%(5%)(10%) level. “Amount Paid per Acre” is the payment in |the farmer received (it is the total
amount for those who were monitored and complied (i.e. did not burn), it is the upfront amount for any
respondents in the treatment groups with upfront component who participated but did not call for
monitoring/burned, and it is 0 for respondents in treatment groups without upfront component who did
not call for monitoring/burned, for respondents in any treatment groups who did not participate, as well as
for respondents in the control group). “Cost per Unburned Acre” the amount paid per acre divided by the
treatment effect.
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A.2 Intervention Script

Program description

Our organization is working on agricultural and environmental issues and we want to help

farmers manage paddy stubble after the paddy harvest this season. I am here to share details

of a program that we are introducing to some farmers in this village during the paddy crop

season in the month of October and November 2019.

To encourage farmers to manage paddy stubble in an environmentally-friendly manner,

we will offer you an agreement that will pay you if you do not burn your paddy field(s) this

season. We will compensate you at a rate of [treatment rate] per acre (up to a max. of

[treat rate x 100]). You may use any alternate methods of managing the residue. Other than

burning the stubble, we do not place any condition on what this method should be.

This monetary compensation will only be given to you if a monitor, during the months

of October and November, assesses that that your paddy field has not been burned. If you

are interested in participating, I will explain the terms and conditions of the agreement

to you that will help you decide whether you want to enroll in the programme or not. If

you are uncertain about signing the agreement because you are unsure whether you would

be fulfilling the conditions of the contract, let me remind you that there is no harm in

participating in the programme. If you burn, you will not be penalized in any way by us.

If you do not burn, you will be given the reward. By signing you are only giving yourself a

chance to win money.

If you would like someone in the house to help you make a decision and listen to the details

of the programme, please feel free to invite them now. Please remember that whoever signs

the agreement must have a bank account to enable payments at a later date.

Information handout

This document provides details on some of the items in the agreement and is to help the

enrollee farmer with complying with the terms and conditions of the agreement.

Monitoring visits
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1. The enrollee farmer is expected to initiate monitoring for all plots, with a maximum

of two requests to J-PAL. All plots must be covered through these two requests.

2. Each request will result in up to two visits by J-PAL monitors. The second visit will

only be performed if J-PAL determines that it is necessary to assess burning.

3. In addition to the requested and scheduled visits, J-PAL can also make unannounced

visits to the plots for checks.

When to call for monitoring: The enrollee farmer should call once all the pre-sowing

work related to stubble has been completed on the plots covered under the request. This

means all activities related to stubble like removing or processing of stubble must have been

completed and no further managing of stubble is required before sowing. In general, requests

should be made at least four days before sowing. The request can occur if any of the following

applies:

1. After the straw and stubble have been completely removed from the plot but no later

than 4 days before sowing.

2. After the straw has been rolled into bales/bundles but no later than four days before

sowing.

3. After the straw/stubble has been mixed or blended into the soil but no later than four

days before sowing.

4. If using the Happy seeder or mulcher: once sowing preparation is complete but no later

than four days before sowing. In these cases, a second monitoring visit will be made

post sowing.

Remember, up to two requests can be initiated. If some plots are ready, call to schedule the

first monitoring, keeping in mind that any plots not covered under the first request have to

be monitored as part of the second request. If all plots are ready for monitoring, they can

be inspected in a single visit.

Phone numbers for calling: xxx, xxx, xxx
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What counts as burning? The agreement requires that farmers do not burn any of their

plots. This will be broken if any of the following (or any other form of burning) are detected

by the monitor. The farmer will not be eligible for payment if any of the following is detected

during monitoring.

• Burning of the upper layer of loose straw left behind by the harvester.

• Burning of the standing stubble.

• Burning of straw collected in one part of the plot.

• Burning as mentioned above on any of the plots.

Important

1. J-PAL SA is not related to any government in any manner. The failure of the enrollee

farmer to meet any term or condition in the agreement will not attract any penalty or

fine, and no legal action will be taken. This is clearly stated in the agreement. We are

only trying to find if this a good way to help the farmers with resolving the residue

issue. We cannot impose any fines or penalties since we are not related to government.

2. The only consequence of not fulfilling any of the term or condition in the agreement

will be that farmer will become ineligible for payment of amount as mentioned in the

agreement.

3. In case the farmer does not request monitoring as specified above, J-PAL will not be

liable to pay any amount as mentioned in the agreement. Decision on payment to be

made will only be taken once all the plots have been fully monitored.

4. If after the first monitoring visit and after analyzing the observations recorded, the

J-PAL SA team ascertains that burning happened in even one of the plots, no further

monitoring visit will be conducted. In this case, the farmer will be ineligible to receive

the payment.

5. At the time of the monitoring visit, we may also request you for bank account details.

The bank account transfer is the fastest and easiest way to transfer the amount. After
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the monitoring has been completed for all the plots and it is assessed that burning has

not happened on any plots, the payment will be made directly into the account.

6. The enrollee farmer should keep the agreement and information handout safe for use

later. The ID and phone numbers given on them are to be used for calling.
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A.3 Sample Contract
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T2 

 

 

 

${village_id} 

${a_hhid} 

${resp_id} 

 

Contract for Incentive Program Offering Payment for No-Burning on Paddy Plots  

This Agreement is executed on ___________________[Insert date]  

by and between ${resp_name},  

residing at  

____________________________________________________[Insert Enrollee Address] 

  

AND 

 

Abdul Latif Jameel Poverty Action Lab South Asia at the Institute for Financial Management and 

Research, which is registered under Society Registration Act 1860 (hereinafter referred to as “J-

PAL SA”), located at Buhari Towers, 2nd Floor, 4, Moors Road, Chennai 600006  

 

Background  

 

J-PAL SA proposes to partner with [${resp_name}] (hereinafter referred to as “Enrollee”) with the 

following summary of responsibilities. 

 

Based on the field measurement completed in a previous visit, (s)he cultivates _#ACRE____ acres 

of paddy currently. 

 

Summary of responsibilities 
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J-PAL SA 

 

1. Visit Enrollee’s paddy plots, which were mapped during the survey visit to the Enrollee that 

was already conducted, to assess whether burning occurred. This monitoring visit will take 

place once Enrollee informs J-PAL SA by phone, as described below. J-PAL will visit the plots 

to assess whether they have been burned within 3 days of being called by the Enrollee. 

'Monitoring will be available only beginning on 15 October 2019 or today (whichever date 

is later). Enrollees that call to be monitored before this date cannot be monitored by J-PAL 

South Asia and therefore are not eligible for payment.  

2. The J-PAL SA team will determine if the field has been burned based on the observations made 

by the monitor during their visit. The process of inspection is summarized below:  

a) The J-PAL SA monitor will visit all the paddy plots as measured during a previous 

visit. 

b) The monitor will physically inspect each plot for visual cues and record the 

observations. Based on the recorded observations during the visit, the J-PAL SA team 

will determine whether the field was burned or not. 

3. If the paddy plots do not appear to be burned, as assessed by the J-PAL SA team, then J-PAL 

SA will provide Enrollee with an amount such that the total payment amount for not burning 

is Rs 800 per acre of enrolled land. The maximum overall payment is Rs 8000. The payment 

amount for the Enrollee is Rs ${pes_amount}. 

 

Enrollee 

1. Enrollee confirms, by signing this agreement, that the paddy plots mapped during the 

survey visit represent all of his/her paddy plots. All paddy plots cultivated in the 2019 

Kharif season must be enrolled.  

2. After harvesting paddy and managing and processing stubble, and at least 4 days before 

sowing wheat or any other rabi crop, Enrollee is required to call J-PAL SA at the numbers 

provided on the information handout between the hours of 9:00 am and 5:00 pm, on any 

date between 15 October and 30 November 2019 to indicate that the fields are ready to be 

monitored.  We will not be able to monitor before the above mentioned date and farmers 

requesting for monitoring to be conducted before the 15th October will not be eligible. 

3. The Enrollee may request up to two monitoring visits to cover all paddy plots, for example, 

for some plots that are ready for monitoring early and others that are ready late. Each plot 

will be monitored up to two times.  

4. The Enrollee will also allow additional, unscheduled monitoring to occur at any point in 

time. 
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5. If it is assessed by the J-PAL SA team that the field is not burnt, the Enrollee will receive 

a payment amount as indicated above. For the enrollee to be eligible for payment, no 

burning should have taken place on any of the plots.  

6. The assessment of whether a field is burnt or not is not dependent on whether the field was 

burnt deliberately or accidentally, or by the Enrollee or someone else.  

 

Payment and contract  

    

1. J-PAL SA shall not be obligated to pay the Enrollee any amount in excess of what is 

mentioned above. 

2. By signing this agreement, the Enrollee acknowledges that J-PAL SA reserves the right 

to rescind the payment of the aforementioned amount if the Enrollee fails to fulfil any of 

the responsibilities designated to him/her under “Summary of Responsibilities” and/or 

breach of the terms of this agreement in any manner or extent.  

3. There will be no legal implications for the Enrollee for the breach of the agreement. J-

PAL SA will not take any legal action against the Enrollee if one or more responsibilities 

remain unfulfilled under the agreement.  

 

 

 

ACCEPTED BY:       ACCEPTED BY: 

J-PAL SA        Enrollee  

Signature        Signature 
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Location                   Location 

      Date        Date 

 



A.4 Remote Sensing Model

This section provides additional detail on the construction of our remote sensing based

outcome. For a complete description, please see Walker et al. (2022).

Model background: The goal of the model is to detect whether a plot in our sample

was burned at any point during the burn season (from October 10 to December 15, 2019)

based on satellite imagery. While burn scars are obvious if the plot is observed by satellite

soon after burning, this signal erodes quickly with time. With a temporal resolution of

about two days, PlanetScope imagery can often capture burned plots within this critical

window. However, clouds and other abnormalities result in a maximum gap between any

two images of 8 days, on average across plots in our sample. While Sentinel-2 imagery has

a coarser temporal resolution of about eight days, it provides mid- and short-wave infrared

(SWIR) bands that are able to detect signals of burning for a longer window post-burn. By

combining observations from both sensors, we built a Random Forest (RF) model with an

overall accuracy of 82% in detecting burning in smallholder rice plots.

Other studies have relied on burn detection based on active fires, using, for example,

data from the Visible Infrared Imaging Radiometer Suite (VIIRS). The sensor has a spatial

resolution of 375m, resulting in pixels that are around 140,000 m2. A typical plot in our

sample is around 10,000 m2, and only a small share of farmers in a village are enrolled in

the study, so existing active fire products are poorly suited to our measurement goals.

An overview of image processing for both types of satellite is as follows:

Imagery and image processing overview:

• PlanetScope: Four-band harmonized surface reflectance product from PlanetLabs

– Resolution: Spatial: 3m, Temporal: 2.2-day on average (30-40 images per pixel)

– Spectral bands: blue, green, red, Near Infrared (NIR)

– Clouds: only included images with <10% cloud cover. Remaining clouds were

masked using the unusable data masks (UDM2) provided with the imagery.
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– Pre-processing: atmospheric correction based on the 6SV2.1 radiative transfer

code already applied to product. Harmonized product also incorporates data

from Sentinel-2 to normalize the spectral response functions between sensors.

• Sentinel-2: Level-1C products from USGS, converted to surface reflectance

– Resolution: Spatial: 10m for visible and NIR bands, 20m for shortwave infrared

(SWIR) bands. Temporal: 7-8 days on average

– Spectral bands: Blue, Green, Red, NIR, SWIR1, SWIR2

– Clouds: Cloudless layers from Google Earth Engine with cloud probabilities ≤.5

cloud were used as initial masks, then inspected and expanded manually to remove

remaining cloud shadows.

– Pre-processing: Geometric and radiometric corrections applied as Level-1C prod-

uct, converted to bottom-of-the atmosphere reflectance with SNAP toolkit.

Feature creation and selection: As model inputs, we used individual bands and derived

indices aimed at reducing noise and amplifying the portion of the spectrum most associated

with burning. These indices were taken from the literature on burn mapping with a focus

on char detection rather than vegetation change, as our primary separation task is between

bare soil (harvested and often tilled plots) and charred soil (burnt plots). For PlanetScope

images, we used the Bare Soil Index (BSoI), which uses all four bands, the Char Index (CI),

which uses all visible bands, and the Burn Area Index (BAI), Simple Ratio (SR) and NDVI,

which use the red and NIR bands. For Sentinel-2 images, we also included several bands

using one or both SWIR bands including the Burn Scar Index (BSI), Mid-Infrared Bispectral

Index (MIRIBI), and two variations of the Normalized Burn Index (NBR and NBR2). See

Walker et al. (2022) for background and equations.

We stacked all images that overlap with any of the study participants’ rice plots into

a time-series and created pixel-level features based on statistics from each band and index

across time. Statistics included min, max, median, and outer percentiles. An additional

temporal differencing measure (Vdiff) was calculated for each band and index with the goal

of capturing the moment the pixel changed from unburned to burned. This Vdiff measure
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was calculated based on the largest drop (or spike) in the sequence of values (V) for Vt+1 -

Vt. We used SequentialFeatureSelector in the sklearn toolkit in Python to reduce the feature

space to an optimal number of features (around 30) prior to the final analysis. Retained

features are presented in Walker et al. (2022).

Recognizing that pixels along the edge of a plot likely present differently due to the

mixture of plot/non-plot classes and different burn patterns at edges, we flagged border

pixels. These pixels were observed to have low importance in the construction of the RF

model and were thus dropped from our analysis.

Model training and assessment: Training data consists of 441 burned and 240 unburned

labels collected on the ground from participant farmers in 2019. Unburned labels come from

plots where participants invited a monitor to visit to confirm that the stubble was managed

without burning. Burned labels come from observations during unannounced spot checks of

participant plots.

We used pixel-level features from the 681 labeled plots to train a RF model to provide

burn predictions. Although data was retained at the pixel level, full plots were held out

from the training data for use in optimization and accuracy assessment. Plot-level holdouts

were necessary because pixels within the same plot have highly correlated features; if some

pixels within a plot were used for training while others were used for testing, overfitting of

the model and overestimation of accuracy would occur. A single plot was held out each time

while a RF model was generated with the remaining 680 plots. This process was repeated 680

times in a Leave-One-Out Cross-Validation (LOOCV) format. Model accuracy was assessed

based on the prediction score for each plot in the run where it was left out of model training.

To convert from pixel to plot-level predictions, we aggregated on the plot-level mean of the

continuous RF output (we also tried the median and various percentiles and found the mean

to perform best). We then used two approaches to set the classification thresholds based on

this mean score, with plots exceeding the threshold classified as burned. First, we maximized

overall accuracy (“max accuracy”) by iterating over each threshold percentile and selecting

the threshold with the highest accuracy for the full labeled set of plots. Alternatively, to

balance accuracy across burned and not-burned labels (“balanced accuracy”), we iterated the

A.24



burn accuracy and the no-burn accuracy over each threshold percentile, interpolated these

accuracies into smooth functions, and selected the percentile threshold with the greatest

accuracy for the mean at the point of intersection (where burned accuracy equals unburned

accuracy). We tested using Cohen’s Kappa for threshold optimization, which measures how

a classifier compares when evaluated against a random classifier. In this case, maximizing

kappa resulted in the same threshold selection as the max accuracy approach for all versions

of our model.

Following plot-level aggregation, our best RF model achieves 82 percent overall accuracy,

with 91 percent accuracy in detecting burned plots but only 63 percent accuracy in detecting

unburned plots (details in Walker et al. (2022)). When the burned/unburned errors are

balanced with our balanced accuracy procedure, the overall accuracy is reduced to 78 percent.
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A.5 Survey Questions used in Constructing Indices for

Heterogeneous Treatment Effects

This section details the (pre-specified) survey questions used in constructing the indices for

heterogeneous treatment effects.

Financial constraints

1. If you needed to spend |5000 for agricultural equipment, would you have savings to

draw on?

2. If you needed to spend |10,000 for agricultural equipment, would you have savings to

draw on?

3. If you needed to spend |5000 for agricultural equipment, how easy would it be for you

to get a loan for that amount?

4. If you needed to spend |10,000 for agricultural equipment, how easy would it be for

you to get a loan for that amount?

These (standardized) variables are used to create an index, which is used to create a

binary variable split at the median to denote high financial constraints.

Distrust

1. Generally speaking, would you say that most people can be trusted or that you need

to be very careful in dealing with people?

2. I’d like to ask you how much you trust people from various groups. Could you tell

me for each whether you trust people from this group completely, somewhat, not very

much or not at all?

• People in your neighborhood?

• Strangers?
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3. Even if you have had very little or no contact with these following institutions, please

base your answer on your general impression of these institutions.

• The Punjab Government?

• The village Panchayat?

• The cooperative society?

• Non-governmental organizations (NGOs)?

• Financial Institutions like Banks/Insurance Companies?

CRM access barriers indices

We construct three indices to measure different aspects of CRM equipment access barriers.

The first measures information constraints, the second access barriers, and the third beliefs

about how CRM equipment impacts agriculture relative to burning. All questions except

the first are asked about the CRM equipment farmers reported being familiar with.

Information Constraints

1. Do you know about any crop residue management techniques to manage paddy stubble?

2. Where can you rent it (CRM equipment) from?

Access Barriers

1. Do you own [CRM equipment] as an individual or member of a CHC or Coop?

2. Is using [CRM equipment] more expensive or less expensive than burning paddy stub-

ble?

3. In days, how long would it take you to access crop residue management equipment for

managing paddy stubble at harvest time this year?

4. Including all costs, how much would the equipment cost per acre (in Rs.)?

5. How many days would it take to manage paddy stubble using this equipment?
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Negative Beliefs About CRM Equipment

• Is using [CRM equipment] better for long-term soil health or worse for soil health than

burning paddy stubble?

• Does using [CRM equipment] help yield of rabi season or hurt yield of rabi season

compared to burning paddy stubble?
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