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Optimal fiscal and monetary policy with distorting taxes

By Christopher A. Sims∗

When government debt pays a lower return than private assets, the
reasoning in Friedman’s essay on the optimal quantity of money
suggests that it would be optimal to expand the debt until its return
matched that on private assets. When the only other source of
revenue is a distorting tax, however, this is not generally true. In
a perfect foresight model, a benevolent government that can make
credible commitments chooses a large gap in returns initially and
high distorting taxation in the distant future. The optimal path of
taxation is time-inconsistent, with ever-increasing temptation to
abandon the path.

Blanchard (2019) and Mehrotra and Sergeyev (2021) have reminded us that
real rates of return on government debt have in most years been so low that the
debt-to-GDP ratio would decline or remain stable even if the debt were simply
rolled over. That is, without any taxation to “back” the debt, with interest and
principal payments being financed entirely by the issue of new debt, the debt-to-
GDP ratio would not increase. They characterize this situation as one in which
there is zero or negative “fiscal cost” to public debt.

The possibility that when debt pays a lower return than other assets permanent
deficits are possible has been explored by Reis (2021) and by Mian, Straub and
Sufi (2022), who do not include distorting taxes.

Conventional thinking about public debt sees debt as requiring fiscal backing, so
that increased debt requires increased future taxes or reduced future expenditures.
If the taxes are distorting, this is a burden. But if we can increase expenditures
on beneficial programs, or reduce distorting taxes, without any need to offset the
resulting deficits with future increased taxes or reduced expenditures, it appears
it would be irresponsible not to exploit this possibility.

There is another approach to thinking about optimal fiscal policy that reaches
an apparently opposite conclusion, however. Friedman (1969) argued that optimal
monetary policy should set the nominal interest rate to zero, thereby making the
real return on money match that on other assets. If “money” pays interest,
Friedman’s prescription is that the interest rate on money should match that on
other assets. In many models, this requires taxation, either to pay explicit interest
or to contract the supply of outstanding government liabilities. So Friedman’s
prescription becomes “increase government surpluses to raise the rate of return

∗ Department of Economics, Princeton University, sims@princeton.edu The paper has benefited from
comments by participants at several seminar presentations. ©2024 by Christopher A. Sims. This
document is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported
License.

1

http://creativecommons.org/licenses/by-nc-sa/3.0/


2 AMERICAN ECONOMIC JOURNAL MONTH YEAR

on government liabilities, until the rate on government liabilities matches that
on other assets”. Blanchard’s reasoning, on the other hand, might be read as
“so long as the rate of return on government liabilities is low enough, increased
deficits are desirable.”

While there are many papers on optimal fiscal and monetary policy, three of
them illustrate the range of conclusions and contradictions in this area. Chari
and Kehoe (1999)1 show that in a model like that in this paper, an optimizing
government that makes policy commitments at an initial date, will set the liquidity
premium on government debt to zero at all times.2 Woodford (1990) reaches the
apparently contradictory conclusion that in the same sort of model, the optimal
steady state may involve a positive liquidity premium. Chari and Kehoe suggest
that Woodford’s result arises because he considers only steady state equilibria (i.e.
with constant tax rates), while their results apply when instead the government
chooses a fully optimal, and non-stationary, path for policy. However, in a paper
cited by neither the Chari/Kehoe paper nor the Woodford survey paper, Calvo
(1978) showed in a similar model that optimal policy leads to a non-stationary
equilibrium in which the liquidity premium does not converge to zero.3 This result
arises despite the fact that the government could by appropriate policy induce a
stationary equilibrium with a zero liquidity premium.

Chari and Kehoe argue that their result depends crucially on their assumption
that balances and consumption enter the utility function separably, as a homo-
thetic aggregate (so utility is U(ϕ(C,m), L) with ϕ homothetic). Calvo considers
only models in which utility is additively separable in real government debt and
consumption, which does not in general satisfy Chari and Kehoe’s homotheticity
assumption. It might appear, then, that this is why Calvo’s result is different.

As we will see, though, this paper shows that the most important distinction
between the Chari/Kehoe paper and the other two is that Chari and Kehoe
assume the government has the option at “time zero” of backing the entire money
stock with interest-bearing private-sector liabilities. This then allows financing
the necessary interest payments on debt, or the contraction of the nominal stock,
without any need to use distorting taxes. The papers by Woodford and Calvo,
like this paper’s model, assume instead that the government cannot hold large
amounts of privately issued assets.

1The main argument in the Chari/Kehoe paper follows that in the earlier paper by Chari, Christiano
and Kehoe (1996). The earlier paper considered only cash-in-advance models, while the later one covered
also money-in-utility-function models, which are equivalent to those in this paper.

2Their model, like the main version of the model in this paper, makes setting the liquidity premium to
zero impossible, but it can be set arbitrarily close to zero, and welfare improves as the premium shrinks.

3Calvo actually discusses two models. In the first model, private sector behavior is represented by
directly assuming a form for a “demand for money”, without deriving it from private sector optimization.
The government is assumed to have an objective function depending on aggregate consumption and real
balances. It is in this model that he shows optimal policy has high initial inflation, low initial taxes, and
convergence to a steady state not satisfying the Friedman rule. His second model instead postulates the
same objective function for the government and private agents and derives private sector behavior from
dynamic optimization. In this model he shows time inconsistency of optimal policy, but does not derive
detailed results about the nature of the optimal policy path.
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This paper works with a model that matches the assumptions on homotheticity
and separability in Chari/Kehoe, matches their assumption that saturation of
demand for liquidity is possible only asymptotically, and considers a possibly
non-stationary Ramsey solution. The difference that alters the result is entirely
in this paper’s assumption that the government cannot hold private sector bonds
that pay a premium return over government debt.

This paper’s model reproduces Calvo’s result that a benevolent government that
can make firm commitments to future policy optimally initially runs deficits and
generates a large gap between the return on government debt and the discount
rate. The optimal policy promises an ever increasing tax rate. This type of result
is probably generic. Postponing distorting taxes makes the required amount of
taxation rise, but only at the real rate on government debt, which is less than the
discount rate. So unless the distortion costs are rising rapidly with the tax rate,
discounted utility rises when tax increases are postponed this way. In models
like this one (and Calvo’s) that assume perfectly flexible prices, optimal policy is
likely to generate immediate inflation, while in a sticky-price model the inflation
would be delayed. The same mechanism supporting delayed tax increases would
nonetheless probably apply.

Angeletos, Collard and Dellas (2023) consider a system close to Calvo’s, but
provide deeper discussion of potential microfoundations for it. The Angeletos et
al paper also assumes real debt is taken by the government as given at time 0.
It therefore does not consider the possibility of a jump in the price level at the
initial date and does not get the result in this paper and Calvo’s that optimal
initial real debt is uniquely determined.

Krishnamurthy and Vissing-Jorgensen (2012) present evidence that US Trea-
sury securities have historically paid a lower yield than comparable corporate
bonds, that this cannot be explained by default risk, and that the yield spread
shrinks as the supply of treasury securities increases. They argue that Treasuries
behave much like non-interest-bearing high-powered money in these respects.4

Our model in this section builds on their observations, treating all debt as pro-
viding liquidity services. Of course we are simplifying by having only one kind
of debt, with a single interest rate and maturity. The argument of the previ-
ous section, supports the idea that an optimizing government would issue only
liquidity-providing debt.

This paper works with a simple perfect-foresight, representative agent model
in which there is just one type of duration-zero, nominal government debt. Real
government debt provides a liquidity or transactions benefit that appears in the
private sector budget constraint. There is a single, proportional, tax on labor and
a linear production function. Prices are perfectly flexible. The government cannot
acquire private sector assets that pay a higher rate than that on government debt.

4Angeletos, Collard and Dellas (2023) argue that if corporate bonds provide some liquidity services,
the gap that Krishnamurthy and Vissing-Jorgenson measure, between corporate and government yields,
does not capture the full value of liquidity services of government debt.
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We pair this model of the private sector with three assumptions about govern-
ment tax policy. First we consider a government that can credibly commit to an
arbitrary, infinitely long, time path of the tax rate τ , which it announces at the
initial date t0. Then we consider a form of limited commitment, in which the
government can announce an arbitrary path for τ from an initial date t0 until a
later date t0+T , at which point a new government takes over for a new T -period
term of office, etc. Finally, we consider results when the government can commit
only to constant time paths for τ .

I. Simple model

A representative individual chooses the time paths of C (consumption), L (la-
bor), A (nominal government debt) and B (government debt with possibly lower
interest rate) while taking P (the price level) and τ (the tax rate on labor) paths
as given (and known in advance). The individual’s objective is to maximize∫ ∞

0
e−βt(logCt − Lt) dt(1)

subject to

C ·
(
1 + f(v)

)
+

Ḃ + Ȧ

P
= (1− τ)L− ϕ+

iB

P
+

rA

P
(2)

v =
PC

B
, B ≥ 0, A ≥ 0, L ≥ 0 .(3)

Here v is a version of “velocity”, and f(v)/(1 + f(v)) can be interpreted as the
fraction of consumption spending that is absorbed by transactions or liquidity
costs. (Henceforth we will treat “transactions costs”, “liquidity costs” as equiva-
lent and “liquidity benefits” as minus the same thing.) B is government liabilities
that provide a transactions or liquidity service, while A is government liabilities
valued only for their return. Both may pay interest, but unless demand for liq-
uidity or transaction services is saturated, i < r. τ is the proportional tax rate
on labor, and ϕ is a lump-sum tax.

An equivalent specification would define

C∗ = C · (1 + f(v))

and then make utility depend on C∗ and b = B/P , while omitting the f(v)
term in the budget constraint. Note that if utility is of the form U(C,L), and
we rewrite the problem with C∗ but no v term in the budget constraint, and
V (C∗, b, L) = U(C,L) in the objective function, we have, by making B/P enter
the definition of C∗ only via f(v), enforced homotheticity of V in C∗, B/P . This



VOL. VOLUME NO. ISSUE OPTIMAL POLICY WITH DISTORTING TAXES. 5

is important for connecting this paper’s results to Chari and Kehoe (1999), who
emphasize that their results depend on homotheticity of utility in C∗ and b.5

The money-in-budget-constraint formulation makes it easier to see what fraction
of spending is absorbed by transactions costs, and in particular avoids allowing
implied transactions costs becoming negative.

The linear disutility of labor, linear production function, and unbounded supply
of labor are chosen to make the algebra of deriving our results simpler. As should
become clear, the results don’t depend on these details of the specification.

To derive the Euler first order conditions for the private agent’s problem as-
suming none of the inequality constraints bind, we form a Lagrangian

(4) logCt − L− λ

(
C ·
(
1 + f(v)

)
+

Ḃ + Ȧ

P
− (1− τ)L+ ϕ− iB

P
− rA

P

)

and apply calculus of variations to arrive at

∂C :
1

C
= λ(1 + f + f ′v)(5)

∂L : −1 = −λ(1− τ)(6)

∂B : − λ̇

P
+

βλ

P
+

λ

P

Ṗ

P
=

iλ

P
+

λγv2

P
(7)

∂A : − λ̇

P
+

βλ

P
+

λ

P

Ṗ

P
=

rλ

P
.(8)

These can then be simplified to

C · (1 + f + f ′v) = 1− τ(9)

−τ̇

1− τ
= i+ f ′v2 − β − Ṗ

P
.(10)

r − i = f ′v2 .(11)

We assume f ′v2 is monotone increasing in v. This is automatically true if f ′′(v) ≥
0 for all v > 0, but if we want to allow for the possibility of equilibria with
b = 0, f(v) must remain bounded as v → ∞. This is possible with f ′v2 monotone
increasing, but there are reasonable-looking choices of f that violate monotonicity
of f ′v2. We rule them out because they raise the possibility of multiple equilibria,
which would complicate analysis of the model.

5For example, with f(v) = γv and this model’s U(C,L) = log(C)− L, we get

V (C∗, b, L) = log

((√
1 +

4γC∗

b
− 1

)
·

b

2γ

)
− L .
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The government has to finance a given path G of expenditures, which provide
no utility to the private agents. Its budget constraint is

(12)
Ḃ + Ȧ

P
+ τL+ ϕ = G+

iB + rA

P
.

The social resource constraint

(13) C · (1 + f) +G = L

is derivable from the government and private budget constraints.

II. What are reasonable assumptions about initial conditions?

The government budget constraint (12) implies that total government liabilities,
A + B has a continuous time path. In other words, to change A + B requires
changing tax revenues τL+ ϕ, government expenditures G, or interest payments
on debt iB + rA. It is unreasonable to think of any of these as being changeable
at infinite rates. Treating the rate of growth Ȧ + Ḃ as well defined at every
date, which is implied by treating (12) as a non-forward-looking equation, makes
economic sense.
The government budget constraint does not require that A and B individually

have continuous time paths. With B−0 and B+0 (for example) as notation for
the left and right limits of B at time zero, we have

(14) B−0 +A−0 = B+0 +A+0 ,

while B−0 ̸= B+0 and A−0 ̸= A+0 are possible. Private agents see themselves as
having to save out of current income to change their total assets A+ B, but see
themselves as able to trade instantly with the government to any desired ratio
of A to B in their asset holdings. But then if B−0 + A−0 is non-zero, to arrive
at zero net worth at time zero requires a policy that makes P+0 infinite. If A is
bounded below, this implies in turn real balances b+0 = B+0/P+0 are zero and
that transactions costs are maximal.
While setting interest bearing debt to zero (or its minimum feasible value) has

the beneficial effect of reducing required future taxes, in the model liquidity-
providing balances are important. Unless barter equilibrium (b = 0) is optimal,
an optimizing government, free to choose a time path of policy that fixes the
price level at time zero, will choose a combination of inflation and tax policies
that make B+0 = B−0 +A−0 and thus A+0 = 0.
Another way to explain our initial date assumption is that we assume the

government issuing nominal debt is recognized to have the option at any date
of diluting the claims of holders of the debt and of money balances by deficit
finance, but is assumed to be committed not to introduce a new currency, and
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debt denominated in it, that has a higher seniority as a claim on future revenues.
Of course if the government at time zero can repudiate both existing debt

and existing currency, then issue new currency and use it to buy private sector
liabilities, and if it can do all this while preserving its perfect credibility, it can
achieve a better outcome than is obtainable by just setting the P+0 so that agents
choose A+0 = 0. However defaulting on outstanding debt and currency is an
action that the government is assumed never to do in the future. On the other
hand using unanticipated price level fluctuations to stabilize the real value b+ a,
and maintaining a

.
= 0, is not only optimal at time zero, in a stochastic version of

the model the fully committed government would probably do this at every date.
In mapping the conclusions of this model into an actual economy, the optimality

of A ≡ 0 should not be taken as implying that interest-bearing debt does not
or should not exist. In reality government debt comes in many maturities, all
or most of which pay real returns lower than what is apparently available on
other investments. The A = 0 conclusion means that government debt that
exists should pay an interest rate less than or equal to what is available on other
investments, with equality only when demand for liquidity has been saturated.
If we removed the constraint that A ≥ 0, we could implement Chari and Kehoe’s

conclusion on optimal government actions at the initial date: repudiate (or inflate
away entirely) the existing A−0+B−0, then issue new liquidity-providing debt by
purchasing private sector liabilities, so that A+0 + B+0 = 0. Then a policy that
equalizes the return on debt with that on other assets can be financed without any
use of taxation. We show in appendix section G that, in agreement with the Chari
Kehoe result, under these assumptions it is indeed optimal for the government
to equalize the return on private and government liabilities. Note that the initial
step here, the repudiation of outstanding debt at time 0, is one that an optimizing
government will be tempted to repeat, but must promise never to repeat.
In their classic article on monetary and fiscal policy Lucas and Stokey (1983)

consider a model without capital similar to the model in this paper. They assume
the government at time 0 has real debt that cannot be repudiated and provides no
liquidity service, and that it injects non-interest-bearing money into the system
by open market operations in this real debt. They observe that, as in this paper,
there is no way to avoid a time-inconsistency problem in their monetary economy
when the government cannot commit to a time path for the price level. They
discuss optimal monetary policy assuming the government can commit to a time
path for the price level. Their assumption of non-zero real debt that carries
no liquidity premium distinguishes their setup from that in this paper in Calvo
(1978), and in Angeletos, Collard and Dellas (2023).

III. Optimal, time-inconsistent policy with full commitment

Here we assume a benevolent government that maximizes the same objective
function as the representative agent. The government can credibly commit to
any time path for τ , and we assume lump sum taxes are unavailable, i.e. ϕ ≡ 0.
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We assume the liquidity services function f(v) = γv. We also assume there is no
non-liquidity-providing debt A, only B.

Equation (10) with our linear form for f becomes

(15) i = β +
Ṗ

P
− γv2 − τ̇

1− τ
.

We can rewrite the system with the real return on government debt ρ = i− Ṗ /P
replacing i, and, because i and Ṗ /P enter the system only as their difference, we
then have a system of 5 equations in 5 unknowns, which we assemble here for
convenience:

C · (1 + 2γv) = 1− τ(16)

ḃ = ρb+G− τL .(17)

C(1 + γv) +G = L(18)

ρ = β − γv2 − τ̇

1− τ
(19)

v =
C

b
.(20)

Note that by using ρ, we have eliminated both i and Ṗ /P from the system. This
implies that given the time path of τ , i affects the equilibrium only by changing
the inflation rate. Changing i has no effect on the other five variables: C, v, ρ,
L, and b.

This equation system can be solved to allow expressing all variables in the
system as functions of v, τ , and τ̇ . Dividing the government budget constraint
(17) by b and expressing the left-hand side (ḃ/b) and ρ as functions of τ , τ̇ and v
produces

(21)
ḃ

b
=

−τ̇

1− τ
− v̇

v
· 1 + 4γv

1 + 2γv
= β − γv2 − τ̇

1− τ
+

G− τL

b
.

The terms in τ̇ cancel, allowing us to derive an expression for v̇/v in terms of τ
and v alone:

(22)
v̇

v
=

S︷ ︸︸ ︷
1 + 2γv

1 + 4γv

R︷ ︸︸ ︷(
γv2(1 + τ − 2G) + (τ −G)v − β

)
.

The two expressions in the formula for v̇/v are labeled R and S to aid understand-
ing of the appendix derivation. Note that the locus in v, τ space of constant-v
points is defined by R = 0.
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Equation (22) captures all the constraints on the government imposed by the
social resource constraint and private agent choice behavior. It is derived taking
the time path of τ as given and makes no use of conditions derived from opti-
mizing government behavior. An optimizing government with the same objective
function as the private agent will therefore solve this problem:

max
τ,v

∫ ∞

0
e−βt(logCt − Lt) dt(23)

subject to (22), (16), and (18) .(24)

Note that (16) and (18) are needed here only to define C and L in terms of v
and τ . We can therefore form a Lagrangian for the government’s optimization
problem, using a single constraint ((22)) and two variables, v and τ . The first-
order conditions for this problem lead, after using (16) and (18) to leave just v
and τ in the system, to two equations determining the optimal path for τ and v.
One involves no derivatives (because τ̇ does not appear in the constraints or the
objective function):

(25)
1

1− τ
=

1 + γv

1 + 2γv
+ (γv2 + v)η

1 + 2γv

1 + 4γv
,

where η is the multiplier, or costate, associated with (22).
The other is a messy expression determining τ̇ as a function of τ and v. Com-

puter code that builds up the expression from components is available in the R
function odevtau()

6 and in this paper’s replication files. Algebraic expressions that
track the computer code’s logic are presented in appendix section D. We end
up with a system of two ordinary differential equations in two unknowns, v and
τ . These are the local (in time) first order conditions for the problem, or Euler
equations.
Figure 1 plots information about the trajectories (time paths in (v, τ) space)

followed by solutions to the Euler equations. It was generated for a numerical
solution of the model with parameters set at β = .02, γ = .01, and G = .25,
However, we show in the appendix that that the qualitative nature of the solution
and this plot holds for all feasible parameter values.
The figure has the labor tax rate τ , bounded above by 1, on the vertical axis

and velocity v = C/b on the horizontal axis. The green line on the figure is
the locus of points satisfying v̇ = 0. The line can be calculated from (22). The
government can implement a steady state with v and τ constant at any point on
the green line simply by announcing that τ will be constant. The blue triangle is
the point on the v̇ = 0 line corresponding to the highest period utility logC − L
among steady state equilibria on the green line.
To bring in information about the government’s optimal policy, we add to Figure

6Available at http://sims.princeton.edu/yftp/CostlessDebt/odevtau.R.
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1 a 100 by 100 point grid of red arrows representing (v̇, τ̇) vectors implied by the
Euler equations of the government’s optimization problem. The lengths of the
arrows indicate speed of movement in the directions the arrows point. The locus
of (approximate) τ̇ = 0 points on the grid is then the set of points where the
Euler equations make τ̇ = 0.7 It is the black line on the figure. Any intersection
of the black and green lines is a steady state of the planner’s problem.

From the figure, it might seem that the black and green curves do not intersect
at all, i.e. that there is no steady state satisfying the Euler equations. This is
an artifact of the finite resolution of the grid. Figure 4 zooms in on a thin sliver
at the left edge of Figure 1 plot, using a 100 by 100 grid on this narrow slice of
(v, τ) space, and it is clear that the two curves do intersect — at τ = 1. (This is
shown analytically in appendix section E.)

The planner can choose the starting point of the economy’s path. By announc-
ing the time paths of τ and deficits, the planner determines the initial price level
and, thereby, both v and τ at the initial date. With the initial state freely cho-
sen, the optimum is determined by the initial transversality condition η0 = 0,
combined with restrictions on the path’s behavior as t → ∞. η0 is the Lagrange
multiplier on the planner’s constraint and is zero at t0 because τ and v are un-
constrained at t0.

The red arrows on Figure 1 make it clear that when starting from points above
the v̇ = 0 line, these Euler equation paths imply eventually rapid increase in v,
with τ converging to the τ̇ = 0 line. In fact it can be shown, and is shown in
Appendix E, that along such paths v → ∞ in finite time. This means b → 0
and C → 0. L converges to G along the path, but if the v = ∞ limit is actually
reached, the incentive to work disappears, as all of consumption expenditure is
absorbed by transactions costs. If we interpret the exogenously given G as a
requirement for the government over the whole infinite future, these paths are
infeasible — once government liabilities are entirely inflated away, the economy
cannot produce G.8

Paths that start well below the v̇ = 0 line lead to steadily declining v, toward
v = 0. These paths are ruled out by the private agents’ transversality condition.
Along these paths τ steadily increases toward 1, and, as v → 0, C and b also
shrink toward zero, though since v = C/b shrinks toward zero, C is decreasing
faster. Along these paths, then, b becomes an ever-larger multiple of C. An
agent in an economy on this path can consider at time t∗ ceasing to work (setting
Lt∗ = 0) and from that point onward simply consuming her finite stock bt∗ over
time. The lifetime utility achievable this way, assuming the real rate of return on
debt ρ ≥ 0,9, is a constant plus log(b∗) plus the discounted present value at t∗ of

7It was plotted using the R contour() function.
8There is a separate question as to whether simply announcing a time path for current and future τ

is enough to guarantee a unique initial price level. We take this up in appendix section C. Ruling out
explosive paths for the price level usually requires that policy commit to higher taxes if the initial price
level is above that consistent with the saddle path.

9We show in appendix section E that on these paths the real return ρ on government debt converges
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log(1 − γvt). But, since C is decreasing, the utility on the original path is less
than log(Ct∗)/β, which, as v → 0, eventually becomes smaller than the utility
obtainable by simply consuming b∗ over time, with Ct = b∗βe−βt.
There is only one path (the “saddle path”) that satisfies the Euler equations

while neither diverging toward v = 0 nor diverging to v = ∞. The start of such
a path is shown as the orange line on Figure 1. It was calculated by imposing
η0 = 0 and varying v0

10 to find a line that did not diverge either to the left or
the right.11 If we could calculate the full path, it would converge to τ = 1, but
beyond the part of it shown in orange, it would on the Figure 1 graph seem to
coincide with the green line. They are so close, because in this range τ on the
optimal path is increasing extremely slowly. The part of the optimal saddle path
shown as the orange line is traversed over approximately 400 years. Though the
economy proceeds, if the time-0 policy commitments are honored, toward τ = 1,
it does not get close to τ = 1 for many centuries.
The time paths of several of the model’s variables are shown in Figure 2, for

the first 400 years, and in Figure 3 for the first 10 years. Inflation is high at the
start, taxes are very low, and utility is higher than in the steady-state optimum
over the entire first 10 years.
In Calvo’s model with real balances entering separably in the utility function,

it is optimal to set taxes to zero at time 0. In this model, with β = .02, γ = .01,
it turns out that optimal τ0 < 0, i.e. a labor subsidy. The optimal path delivers
considerably higher utility in the initial, low-tax periods, and utility approaching
−∞ in the far distant future. τ rises above the value required to support this
level of G in the optimal steady state (the blue triangle, where τ = .27), but not
for a long time, and the rise of τ toward 1 is very slow. The near-term benefits
of low taxes more than offset the heavy, but long-delayed, costs of high taxes in
the distant future.
To visualize the last part of the optimal path, Figure 4 zooms in on the sliver of

Figure 1 at the left edge, for v in (0,.1). There is no separate orange line, because
it so nearly coincides with the green v̇ = 0 line. Progress toward τ = 1 in this
region is extremely slow, as evidenced by the arrows appearing almost perfectly
horizontal. The very small τ̇ values in this region are, however, all positive below
and to the left of the black . . . τ = 0 locus. The benefit of violating the time-zero
commitment in this region is very large, as measured by η, which approaches
infinity as the saddle path approaches 1. It is likely that the temptation for
a policy maker to re-initialize by dropping taxes would be overwhelming. Note
that this is different from the simple Phillips curve examples of time-inconsistency,
where the benefits of abandoning commitment to no surprise inflation are constant

to zero.
10This method is called “multiple shooting”.
11Actually, every path calculated diverged either to the left or the right. What is shown is just the

longest path the differential equation solver could calculate before it diverged. Changes in the initial
conditions in the fourth significant digit made the solution change from the path shown (which actually
crosses the green line and shoots off to the right) to a path that parallels the green line for a while then
shoots off to the left.
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Figure 1. Beginning of optimal path with .β = .02, γ = .01, and G = .25

Note: While the orange saddle path appears to hit the green constant-v locus, in

fact it stays extremely close to it, but always below it, and the orange, green and
black lines all meet at τ = 1, never crossing before that point. The red arrows
show the derivatives of the v, τ vectors. The derivative vectors change rapidly in

the neighborhood of the green v̇ = 0 line. In fact they parallel the green line at

points just below it. The blue triangle is the optimal steady state, corresponding to
the γ = .01 line of table 3.
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Figure 2. 400 years along the saddle path

Note: v: velocity (C/b); τ : tax rate; η: costate; C: consumption;
U: utility; π: inflation; b: real debt; L: labor input; ps: primary
surplus. In the optimal steady state, v=.85, C=.72, U=-1.30,
pi=.0072, b=.81.
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Figure 3. 10 years along the saddle path

Note: See note to figure 2
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Figure 4. End of optimal path

Note: As in Figure 1, the green line is the v̇ = 0 locus and the
black line the τ̇ = 0 locus. The optimal path almost coincides
with the green line, lying barely below it and visually indistin-
guishable from it in this plot.
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over time after the initial period.

IV. Other values of G and γ

The qualitative nature of the phase diagram shown in Figures 1 and 4 does not
change as G and γ are changed, but the magnitudes change a lot. If G = 0 while
γ stays at .01, the initial positive rate of inflation is just 0.40% — that is, 40
basis points — and the initial negative tax rate is -0.44%. Thereafter, as in any
solution, the tax rate steadily rises toward 1.0, but 250 years after the initial date
has reached only 12%. The improvement in utility over the steady state value is
very small — in the third significant digit — but persistent, lasting over 50 years.
The initial inflation also dissipates slowly, taking around 75 years to drop from
0.40% to 0.10%,
With G = .8, numerical results are difficult to obtain, because the differential

equation system, which is already “stiff”, becomes nearly unmanageably so. The
initial inflation rate in this case is extremely high and drops extremely fast. I
can’t obtain stable solutions for the time path of the system starting from the
η0 = 0 initial condition. I can, however, obtain a solution starting from a point
farther along the saddle path, v = 16.727, τ = 6. Here η = .10 rather than 0, but
at this point on the saddle path the instantaneous inflation rate is 3.98 — in log
units, not per cent, i.e. thousands of percent per year. After one year the rate is
back to .53, and after another year it is back to .27, so it is declining rapidly, and
it is below 1% after 54 years. The gains in welfare relative to the constant-tax
solution with the same G and γ is large, .26 log units, and utility remains above
the constant-tax solution level for the first 50 years. The tax rate rises from the
initial .60 to .75 in the first 3 years, and goes above the constant-tax optimum
level of .805 after 30 years.
From these results it is clear that the optimal initial inflation rate is quite sen-

sitive to G, growing larger as the eventually necessary level of taxation increases.
It is also somewhat sensitive to γ, increasing as γ increases.

V. Tax revenue vs. tax rate

Most of the existing literature in this area treats the fiscal policy variable as
tax revenues, with tax distortions a function of revenue. In such a framework, it
is puzzling to find optimal policy leading to tax rates that are on the far side of
the “Laffer curve” — i.e. that deliver less revenue than would be available with
a lower tax rate. But in this paper’s model the tax rate τ and its growth rate
enter the determination of the real return on government debt, as we see in (10).
Furthermore, the effect depends on τ̇ /(1 − τ). so even when τ gets close to one
and τ̇ itself is close to zero, τ̇ /(1 − τ) can have large proportional effects on the
(β − ρ)b seigniorage term in the budget constraint. Of course as τ approaches
one on the saddle path it would be much better to lower taxes, thereby increase
revenues, and make the representative agent much better off. But doing so would
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deviate from the original commitment generating the optimal path equilibrium.
This is just one symptom of the strong time inconsistency in the optimal saddle
path solution.

VI. What if b0, rather than B0, is taken as given?

In their closely related paper, Angeletos, Collard and Dellas (2023) treat real
debt b0 as a state variable. The model in that paper differs from this one in some
other dimensions as well, and it is beyond the scope of this paper to trace out all
the sources of differences between the two papers. Nonetheless it may be useful
to consider what happens to this paper’s results if we treat initial real debt b0 as
given.
This amounts to assuming that a price jump at time 0 is impossible. This

constraint replaces the η0 = 0 transversality condition, but leaves the Euler equa-
tion unchanged. From (D.10) we can see that η0 = 0 implies a positively sloped
relation between τ and v. This positively sloped line can have at most one inter-
section with the negatively sloped saddle path, which is the initial (v0, τ0) point
on the optimal path. From the private sector FOC’s and the definition of v, we
have

(26) b0 =
1− τ

v · (1 + 2γv)

This implies a negatively sloped concave relation for τ as a function of v. On our
Figure 1, this would be a line starting in the upper left corner and decreasing
with v. Since it is concave and the saddle path is convex, it will intersect the
saddle path either not at all, at two points, or at a single tangency point. There
are then usually two solutions, if any, to the Euler equations with this kind of
initial condition — one at a high, and another at a low level of τ . From that point
onward, the solution will be on the same saddle path as the η0 = 0 solution. The
government could choose between initial conditions, when there are two, based
on which gave a higher value for the discounted utility objective function.
The differences in initial points are the only differences between the B0 given

and b0 given solutions, though. The same pattern of ever-increasing τ converging
toward 1, with velocity starting higher and heading downward, applies with either
type of initial condition. The two solutions can even be exactly the same, if the
given b0 happens to match that chosen by the optimizing government with η0 = 0.
The nature of time-inconsistency is different with b0 given. So long as the

chosen intersection of the saddle path with the concave (v, τ) locus defined by
current bt continues to correspond to higher discounted utility, there is no time-
inconsistency. But as the economy progresses along the saddle path it may even-
tually arrive at a point where the objective function rankings of the two choices
reverse. It would then be tempting to jump (without changing b, of course) to
the lower-tax initial condition by deviating from the initially announced τ path.



18 AMERICAN ECONOMIC JOURNAL MONTH YEAR

This temptation would persist so long as the reversal of rankings persisted. This
contrasts with the B0-given case, where at every moment it is tempting to jump
back to the η0 = 0 initial point.

VII. Limited commitment

The infinite horizon outcome with full commitment is unlikely to be even ap-
proximately implemented in practice because of the extremely strong and growing
incentive to deviate from it as time goes on. On the other hand assuming no abil-
ity at all, even for an instant, to commit to a policy seems equally unrealistic.
Realistic models with limited ability to commit would be much more complicated
than this paper’s setup, but we can gain some insight from this paper’s model if
we assume an ability to commit for a fixed, known span of time.

Suppose the policy maker remains in office for T years, after which a new policy
maker, unbound by the previous policy regime’s commitments, takes over, again
for a new span of T years, with this rotation of policy makers going on forever.
In most models of this type calculating optimal behavior depends on determining
how the state variables at the end of a regime affect behavior of the policy maker
in the following regime, but in our setup, because the new regime can start with
a jump in the price level, there is no effect of the terminal state at time T on the
choices of the new policy maker. Each policy maker has an initial transversality
condition that makes η = 0.

However, there can be no jump in the price level with the regime change. The
regime changes are deterministic and known by the public. A jump in the price
level after the initial date would imply an infinite positive or negative rate of re-
turn on government debt at the regime-switch date. Private agents would attempt
to buy or sell debt before the price-jump date and undermine the equilibrium.
Note that this constancy of the price level across the regime switch date is not
a constraint on the new policy-maker’s behavior. The new policy maker is free
to cause a jump in the price level. The constraint is on the previous regime: the
price level at the end of the previous regime must be exactly the value that the
new regime’s policy will choose, so there is no jump. Since the level of nominal
debt B is also assumed not to be able to jump, we can characterize this constraint
equivalently as requiring that real debt b not jump. Then, since all policy makers
have the same objective function and constraints, the equilibrium chosen by the
policy maker in each regime is the same, and b in equilibrium takes the same
value at all policy regime-switch dates.

We can calculate the equilibrium in this limited-commitment model using the
same set of differential equations we used in the infinite-horizon, full commitment
model, replacing the non-explosiveness terminal condition with a constraint on
the terminal value bT . Among paths satisfying the two differntial equations of our
model over (0, T ) satisfying η0 = 0 and bT = b∗, we choose the one with b0 = b∗,
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reflecting our knowledge that all policy makers are identical.12

Figure 5. Path with 10-year commitment

See notes to Figure 2

Figure 5 shows time paths of model variables when T = 10. Compared with
the first 10 years of the full commitment solution, the initial inflation is even
higher. The tax rate rises much more rapidly. Though utility U(C,L) briefly
goes above the steady-state optimal level, the average over the 10 years is much
lower than the optimal steady state value, whereas the full-commitment solution
delivers higher utility than the steady-state solution over the first 10 years.
That the outcome is worse when commitment is possible only over a finite span

is not surprising. Perhaps not so obvious is that recognizing the finite commitment
span does not damp the incentive to run initial large primary deficits and high
inflation.
If the commit period T is long, the solution for the first few years looks similar

12It is important that the policy optimization problem treats b0 as freely chosen and bT = b∗ as a
constraint, with no connection to b0. That bT = b0 is an equilibrium condition, not perceived as a
constraint by the policy maker.
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See notes to Figure 2
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to that for the infinite-horizon commitment case. Figure 6 shows solution paths
when T = 52. The first third or so of the plots are close to the corresponding
parts of the paths for the infinite horizon case shown in Figure 2. But in the
middle of the 52 year commitment span debt starts shrinking, taxes start rising
faster, and utility starts an accelerating decline.

uss uinf u10 u52
-1.3043 -1.2955 -1.3145 -1.2995

Table 1—Utility levels by policy setting

uss: commit to a constant τ ; uinf: full infinite horizon commitment; u10: 10 year
finite time span commitment; u52: 52 year finite time span commitment. Calcu-
lated by numerical integration of the time paths of utility, weighted by e−.02t/.02.
Parameter values are G = .25, β = .02, γ = .01.

Weighted mean utility values (the objective function multiplied by β = .02)
for policies that commit to a constant τ , commit to optimal path for τ over an
infinite horizon, or commit over a fixed time span of 10 or 52 years are shown in
Table 1. The full and flexible commitment produces the best result, as expected;
the 10-year commitment is worse even than a constant-τ commitment; and the
52-year commitment, though worse than the infinite horizon case, is better than
a fixed-τ commitment. The differences in average utility across these cases are
modest — they can be thought of as in log consumption units. The wider swings
in utility in the time paths we have displayed above shift the timing of C, L and
thereby U substantially, but the high initial and lower later values tend to cancel
out.

VIII. Optimal steady states

Why study the constant-tax case when we know that, for a government that
can commit, it is not optimal? One reason is that the unconstrained solution
involves trading high utility now for much lower utility in the distant future. If
all agents in the economy are alive now and live forever, this is not a problem.
But it is also possible to interpret the representative agent economy as consisting
of finite-lived agents who are born at a constant rate and discount the future only
because of a constant risk of death. A benevolent government might then not
discount the future, in order to treat current and unborn future agents equally,
which would lead to choosing the optimal constant tax steady state.

The fully optimal, non-constant-tax solution generates severe time-inconsistency
— much more severe than that in the constant-tax-rate solutions. In fact, it gen-
erates, after a very long time, utility that tends to minus infinity. It seems this
policy could actually never be recommended, because it requires maintaining
commitment to the optimal path despite the benefits of abandoning commitment
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growing without bound. So commitment to a constant tax policy might be possi-
ble, even though sustaining a commitment to the optimal non-constant tax path
is not.
In this section we solve numerically for optimal stationary equilibrium with a

given constant government spending G and lump-sum tax ϕ. If ϕ were freely
variable, it would be optimal to set τ

.
= 0 and nearly saturate the demand for liq-

uidity. We include ϕ in the model because it may clarify thinking about conditions
for existence and uniqueness of equilibrium, which we take up in the appendix.
But for numerical solutions we set ϕ = 0 for convenience.
The optimizing government sets constant values for the labor tax rate τ and i,

the nominal interest rate on B. It maximizes the equilibrium value of the private
agent’s objective function (1), which in this case, restricted to steady states, is the
same as maximizing the undiscounted U(C,L) = log(C) − L. The government
takes (16)-(20) as constraints. However, because we are now assuming τ̇ ≡ 0,
the term in τ in (19) drops out. An argument in appendix section B shows that
transversality and feasibility guarantee that when τ is constant, b must also be
constant. Equilibrium for given constant τ and G is then defined by 5 ordinary
equations in 5 unknowns.
Because b can (via a jump in initial price level P0) jump at the initial date, there

is no transition path from equilibrium with one level of constant τ to another if a
one-time, permanent, unanticipated change in τ occurs. In this flex-price model,
the economy goes immediately to the new equilibrium. The same is true if there
is a one-time, unanticipated shift in a parameter, like the transactions cost or
liquidity service parameter γ, so long as τ remains constant or simultaneously
moves to a new constant value.13

The equation system for the constant-τ case can be solved analytically, resulting
in a univariate quadratic equation. Existence of constant-τ equilibrium requires
τ > 2G − 1. In that case, there is a unique steady state for every feasible τ ,
and there are no non-steady-state equilibrium paths14, so the initial price level
is uniquely determined. Note that τ < 1, because otherwise it is optimal to set
L = 0, and that therefore constant-τ steady states require G < 1.
In the tables below τ is the optimal constant τ for the table’s assumed value

of G. It was found by a one-dimensional grid search on τ . In all the tables
β = i = .02, which means that the gap between β and ρ is generated entirely by
inflation.
Tables 2 3, and 4 show the model’s optimal steady state at various levels of

government spending G and transactions cost parameter γ. Even in Table 2,
where there is no government spending to finance, it is optimal to have a positive
rate of labor tax τ , in order to induce low inflation, a positive real return ρ on

13This contrasts with models (like Angeletos, Collard and Dellas (2023)) that assume the real value
of government debt at the initial date b0 is given. In that case, there would be transition dynamics and
the optimal constant value of τ would depend on the initial b0 value.

14As is shown in appendix section A, uniqueness may depend on trigger policies, or small positive
values for ϕ that are negligible in equilibria but important on off-equilibrium paths.
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γ C b L Ṗ/P U τ psurp γv
1+γv P0

0.001 0.972 1.31 0.973 0.0006 -1.001 0.026 0.0254 0.0007 0.76
0.010 0.940 2.70 0.943 0.0012 -1.005 0.054 0.0507 0.0035 0.37
0.100 0.868 5.27 0.882 0.0027 -1.024 0.103 0.0912 0.0162 0.19
1.000 0.721 9.27 0.778 0.0061 -1.104 0.166 0.1293 0.0722 0.11

Table 2—Optimal steady state with G = 0, β = .02, i = .02

γ: transactions cost parameter; C: consumption; b: debt; L: labor; Ṗ /P :
inflation rate; U : utility; τ : labor tax rate; psurp: primary surplus;
γv/(1 + γv): proportion of consumption expenditure absorbed by trans-
action costs; P0 : initial price level, assuming B0 = 1; G non-productive
government expenditure; β: discount rate.

γ C b L Ṗ/P U τ psurp γv
1+γv P0

0.001 0.741 0.28 0.992 0.0069 -1.293 0.256 0.0037 0.0026 3.56
0.010 0.721 0.83 0.977 0.0076 -1.304 0.266 0.0103 0.0086 1.21
0.100 0.668 2.19 0.938 0.0093 -1.342 0.291 0.0234 0.0296 0.46
1.000 0.547 4.68 0.861 0.0137 -1.464 0.325 0.0295 0.1047 0.21

Table 3—Optimal steady state with G = .25, β = .02. i = .02

See notes to Table 2

government debt, and hence a reduced incentive to conserve on real balances.
However even in this case the inflation rate does not go to zero, as would be
required to make ρ = .02 and thereby implement the Friedman rule.

The column labeled psurp is the steady state primary surplus, τL−G. Steady
states with negative primary surplus exist in this model, even though in its simple
form it has no growth. A permanent primary deficit arises when the real rate of
return on government debt is negative, and by choosing a low enough constant τ ,
the return can be driven negative. However as can be seen from the three tables,
the primary surplus turns negative here only when G is very large, in Table 4.

The most realistic of these cases, might be Table 3’s γ = .01 row. This produces
a “debt to GDP” ratio of about 0.8, transactions costs absorbing about 1% of
consumption and a tax rate of 27%. In this case the optimal real rate on debt ρ
(the 2% nominal rate i minus the inflation rate) is 1.24%.

In Table 4 taxes and inflation substantially depress consumption in order to
accommodate the high level of G. Inflation is over 8%. Nonetheless the steady
state primary deficit delivers only a small fraction (about half of one percent when
γ = .01) of total revenue.

With τ = 0, the primary deficit is increasing in v over the whole (0,∞) range,
and approaches .5 from below as v → ∞. Even in Table 4, where government



24 AMERICAN ECONOMIC JOURNAL MONTH YEAR

γ C b L Ṗ/P U τ psurp γv
1+γv P0

0.001 0.196 0.02 0.998 0.0823 -2.627 0.800 -0.0013 0.0090 46.27
0.010 0.188 0.06 0.994 0.0855 -2.665 0.801 -0.0042 0.0284 15.55
0.100 0.167 0.17 0.983 0.0955 -2.775 0.801 -0.0129 0.0890 5.87
1.000 0.123 0.37 0.965 0.1137 -3.060 0.794 -0.0342 0.2522 2.74

Table 4—Optimal steady state with G = .8, β = .02, i = .02

See notes to Table 2

expenditure is taking up around 80% of output and the tax rate is about 80%, the
primary deficit remains well below its upper bound. Even though the Friedman
rule is not optimal in this model, the inflation tax produces little revenue relative
to the distortion it induces, so that it is optimal to use it to generate revenue only
when the other tax available is at highly distortionary levels.
Note the contrast between these steady state results and those for the fully

optimal equilibrium. Optimal steady states involve positive primary surpluses
and small gaps between β and ρ, except when a very large proportion of output
is taken up by G. Even with G = .8, though, the proportion of revenue raised
through seigniorage is small. The steady state results suggest that, though the
Friedman rule is not optimal, it is not a bad approximation to optimal policy.
In contrast, the non-stationary optimum involves negative primary surpluses

and a large gap between β and ρ over a decade or more after the initial date.
Over time, it does drive β−ρ toward a small, but positive limit, and in this sense
approximates the Friedman rule. But it does this by driving C and B/P both
toward limiting values of zero, and thus also U(Ct, Lt) toward a limiting value of
−∞.

IX. Allowing for growth

The arithmetic of “zero fiscal cost” debt might seem to rest on there being
positive growth. The idea is that if the economy is growing at a rate exceeding
the real rate of return on government debt, debt can be increased today, without
any actual or expected future increases in taxation (or reductions in expenditure).
with debt nonetheless shrinking relative to output over time.
This line of reasoning is misleading. It ignores wealth effects and inflation.

People must be induced to hold the additional debt. They can be induced to do
so, even without increased taxation, but only by lowering its real value through
inflation. This is true whether or not there is economic growth.
In fact, in this paper’s model if we introduce constant labor augmenting tech-

nical progress at the rate θ and interpret C, G and psurp as ratios to eθt, the
model is unchanged except that the discount rate now has to be interpreted as
the discount rate β of private agents plus the rate of technical progress θ. None
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of the entries in the steady-state table then change. The “β = .02” line in the
captions would change to β + θ = .02.

Of course, tables calculated with private agents’ β = .02, θ = .02, would differ
from those shown. But the difference would not be lower labor taxes at a given
G. Because the Friedman rule requires a higher return on B with an increase
from β to β + θ in the discount rate, the optimal steady state is likely to have a
positive primary surplus (that is, τL > G) even with positive θ. If we start with
the economy of the second row of Table 3 and increase θ from 0 to .02 or .04,
the optimal steady state still implies a positive primary surplus, and the primary
surplus is larger for larger θ. The increased liquidity costs from a greater gap
between ρ and β + θ more than offset the benefits from the reduction in τ that
would be possible with a permanent primary deficit.

X. Allowing for ρ = β at finite v

This paper, like many related papers, specifies the liquidity services of govern-
ment debt as positive no matter how high the ratio of real debt to consumption,
so an equilibrium with saturated demand for liquidity services (ρ = β) is not pos-
sible. The main results of this paper hold, though, even in versions of the model
that do allow saturation. In the online appendix section F we first show that if
the generic transactions cost term f(v) in equation (2) is smooth enough, then
the optimal steady state has ρ < β, even when a steady state with saturation is
feasible. The reason is that an f that goes very smoothly (with many derivatives)
to zero as v shrinks makes the marginal reduction in transactions cost per unit
reduction in v very small for small f , while the fiscal cost of additional reductions
of v shows no such shrinkage.

Then we consider the fully optimal policy in a version of the paper’s main model
in which the f(v) = γv assumption is replaced by f(v) = max(0, γ(v − v∗)). In
this case there is a path for the economy that satisfies the Euler equations and,
as in the main model, has τ increasing very slowly to one, while v decreases to a
limit strictly greater than v∗. Though in principle it might seem that there could
be a steady state with v just below v∗ that, by eliminating transactions costs,
might dominate the interior solution, this is not true for any v∗ < v̄, where v̄ is
the lower bound and limiting value of v on the interior solution path. Though
transactions costs are gone, maintaining a v < v̄ in steady state requires such
high taxation that for v∗ < v̄ there is no feasible steady state. A sketch of the
details of these results is in appendix section F.

XI. Are there generally useful insights from this simple, stylized, model?

This model makes strong functional form assumptions that affect its conclu-
sions, but it embodies principles that may apply more widely. Why is it optimal
to inflate early and postpone taxation? One reason is that the gap between the
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return on government debt and the discount rate β means that when revenue col-
lection is postponed, the ratio of required future revenue to the revenue initially
postponed grows slower than β. Its discounted present value therefore shrinks the
more it is postponed. The solution is not indefinite postponement, because as the
required revenue grows, the costs of the distortion induced by taxation grow more
than linearly with the revenue. Another reason is that high future seigniorage
revenue, since it is anticipated, raises the current price level and thereby reduces
the base for the current inflation tax, while high future taxes have the opposite
effect on the base for the current inflation tax. These are general principles that
are likely to apply in other models.
Calvo’s model produces a qualitatively similar result. Though his framework,

unlike this paper’s, made satiation of demand for money possible in a steady
state, he showed that with full commitment the economy has high initial inflation
and converges to a steady state that preserves a gap between the return on money
and the discount rate.
Since abandoning the full-commitment path eventually becomes extremely ben-

eficial, it is unlikely that any government would actually follow the path for a long
time. But as we have seen, a solution with temporary commitment can provide
lower discounted utility than a steady-state solution. The optimal steady state
solution also requires commitment, but that commitment is arguably more sus-
tainable. The incentive to deviate from the steady state commitment is constant
over time, rather than ever-growing, and it might be easier to enforce the simpler
behavioral norm of constancy in tax rates.
Nonetheless, the tradeoffs the full-commitment path brings out are likely to

affect policy discussion, especially in times of fiscal stress. The argument that a
gap between the return on government debt and market interest rates is a fiscal
resource that can be used to avoid high current levels of taxation is correct. That
this will require increased fiscal effort in the future, but only a modest increase,
and one that can be repeatedly postponed at modest cost, is also correct.
The paper’s model and our discussion of it leave plenty of open questions.

Perhaps among the most important are: How would conclusions change if there
were capital, or another asset? What if prices are sticky?

XII. Real world complications

Blanchard (2019), based on his Figure 15, argues that there is some evidence
for a decline in the real return on capital, measured as the rate of profit relative
to market capitalization. If there is such a decline15, we could interpret it in
this paper’s model as a decline in θ, the rate of labor-augmenting technological
improvement. This would imply that the gap between the return on debt and
private asset returns might have been declining despite the stable rate of infla-

15The rate was in the 6-8% range in the 1960’s in the US, and has been in the same range since 2001.
There is some apparent downward trend, but it is not strong or uniform.
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tion, and therefore that the economy has been moving toward less reliance on
seigniorage finance. This does not in itself, of course, imply that returning to
previous levels of seigniorage would be optimal.
This paper uses a representative agent model, and therefore cannot consider

intergenerational tax-shifting or “crowding out” issues. Blanchard and Mehro-
tra/Sergeyev instead assume away tax distortions in order to focus on intergener-
ational issues. Both aspects of debt finance are important, and should be consid-
ered jointly. Furthermore, liquidity premia on government debt vary somewhat
across the term structure and across time, and currency, bearing no interest, does
exist. A more serious quantitative evaluation of the effects of debt finance should
consider all of these potentially important factors as operating jointly.
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Optimal fiscal and monetary policy with distorting taxes:
Appendix

By Christopher A. Sims∗

Draft: April 20, 2024

This appendix provides proofs and modeling details for the paper
“Optimal fiscal and monetary policy with distorting taxes”.

A. The steady state solution and its uniqueness

We are assuming τ constant, b > 0, C > 0, v > 0. The Lagrange multiplier
on the agent’s budget constraint is negative if τ > 1, so this is ruled out by
the agent’s optimization. (There is no reason to work if the after-tax wage is
negative.) Negative τ is in principle possible if seigniorage is used to generate
revenue that finances a labor subsidy. With τ̇ = 0 and ḃ = 0, the system of five
equations, (16), (12), (18), (19) and (20) introduced on page 8 of the main text
can be solved recursively to deliver the single quadratic equation in v,

(A.1) γv2(1 + τ − 2G) + (τ −G)v − β = 0 .

Its roots are

(A.2) v =
G− τ ±

√
(G− τ)2 + 4βγ(1 + τ − 2G)

2γ · (1 + τ − 2G)
.

If τ > 2G − 1, the equation has two real roots, one positive and one negative.
Since negative v makes no sense in the model, the positive root is the relevant
one. If τ < 2G− 1, the roots could be imaginary, in which case they correspond
to no equilibrium of the model, or they can be real and of the same sign. For
the two roots to be positive, we must have G < τ . But G < τ and τ < 2G − 1
jointly imply τ > 1, which we have noted is impossible. If τ = 2G − 1, there is
only one root, which is negative. So the only case that delivers an equilibrium
with positive v is τ > 2G − 1, and in that case the steady state v is unique for
each constant value of τ > 2G− 1.

∗ Department of Economics, Princeton University, sims@princeton.edu The paper has benefited from
comments by participants at several seminar presentations. ©2024 by Christopher A. Sims. This
document is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported
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B. Is the steady state the only equilibrium with constant τ?

The previous section shows there is only one steady state, for any τ for which
a steady state exists. But could there be non-steady-state equilibria with τ con-
stant? To check this, we allow for non-zero ḃ in the government budget constraint
(12). The other equations in the system remain unchanged from the previous sec-
tion. Our derivation of the previous equation (A.1) can be repeated to result in

(B.1) − ḃ

b
= γv2(1 + τ − 2G) + (τ −G)v − β .

Since

(B.2) b =
C

v
=

1− τ

v · (1 + 2γv)
,

b is monotonically decreasing in v, going to zero as v goes to infinity and to infinity
as v goes to zero.

Proposition B.1. Equilibria with constant τ in which b → ∞ are impossible.

PROOF:
For an individual agent, taking the path of prices, taxes, and interest rates as

given, the only state variable is b, real wealth. In any equilibrium, (9) tells us
that C < 1 at all times, so discounted utility is bounded above. Suppose there
is an equilibrium with b → ∞. It can deliver no greater discounted utility than
that provided by the (infeasible) allocation of C ≡ 1, L ≡ 0, which is finite. If
b → ∞ and therefore v → 0, C converges to a positive constant, and the real rate
of return on debt, β − γv2, converges to β. But if b gets large enough, spending
(β − ε)b on consumption plus transactions costs forever (where ε is some small
number), while setting L = 0, will appear to the competitive private agent to be
feasible. Transactions cost γC2/b increase with increased C, but since (β − ε)b
increases linearly with C, velocity v = b/C does not change as we consider higher
consumption spending C(1 + γv) = (β − ε)b. Thus it will appear to the private
agent to be possible, as b grows without bound, to achieve a higher discounted
utility than any in allocation that is actually feasible for the whole economy. This
shows that an equilbrium with b → ∞ does not exist.

Proposition B.2. When there is a constant-tax equilibrium with b constant at
b̄, there are no constant-tax equilibria with b > b̄.

PROOF:
The right-hand side of (B.1) goes to −β as v → 0, which implies that for large

enough b, ḃ > 0. Continuity of that right-hand side, plus our result in appendix
A that a constant-tax steady state, when it exists, is unique, implies that when
a steady state exists, on any constant-tax equilibrium path with b > b̄, b → ∞,
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which is impossible, so when a steady state exists, there are no constant-tax
equilibria with b > b̄.

Proposition B.3. When there is no steady state with the constant tax rate τ ,
there are also no constant-tax equilibria with ḃ > 0 anywhere along the entire
equilibrium time path.

PROOF:
The fact that ḃ is positive for large enough values of b implies, with no steady

state, that ḃ is positive everywhere and thus (since there is no steady state) that
b → ∞, again contradicting the hypothesis that this was an equilibrium.
Now we consider possible equilibria with constant tax rate and decreasing b.

In this model we can rule out such equilibria if we can show that they imply b
reaches zero in finite time. Since b ≥ 0 is our assumption — private agents can’t
borrow from the government — it may seem obvious that if the equilibrium path
implies b reaches zero in finite time and that ḃ < 0 at that point, the equilibrium
is ruled out.
However, as can be seen from (B.2), b → 0 implies v → ∞ and C → 0, while

L → G+ (1− τ)/2. In other words, as b hits zero, transactions cost absorb all of
spending on consumption. At this point, an individual could stop working, and
therefore have no tax obligation (if ϕ = 0), while still having no consumption. A
path converging to this point, while unpleasant, would not seem infeasible to the
private agent. Given the time path of prices and interest rates, there would be
no incentives to deviate from the path for the private agent.
This paradox can be avoided. For example, if ϕ > 0, the dynamics of the model

are unchanged, except that in (B.1) and equations derived from it G is replaced
by G − ϕ/(1 − τ). If the values of ϕ and G are thought of by the agent as fixed
for all time, even after the agent’s b is exhausted, the agent will see these paths
as ones on which his tax obligations can’t be satisfied. This will increase the
agent’s initial demand for government debt, reduce the initial price level, and
thereby push the equilibrium back to the saddle path. A similar way to avoid
the paradox is a trigger policy, where the tax authority promises to introduce a
lump-sum tax if the economy starts on an explosive path. This leaves the saddle
path with ϕ = 0 unaffected, while eliminating the explosive paths.
To see how this works out in this model, we again rewrite the ḃ equation, mul-

tiplying (B.1) through by b and expressing everything on the right as a function
of v:

(B.3) −ḃ = (1− τ)

(
γv(1 + τ − 2G)

1 + 2γv
+

τ −G

1 + 2γv
− β

v · (1 + 2γv)

)
.

Proposition B.4. When τ is constant, there are no equilibria with b → 0.

PROOF:
As v goes to infinity (and b to zero), the right-hand side of (B.3) converges

to (1 − τ)(1 + τ − 2G)/2, a positive number if a steady state exists, implying ḃ



4 MONTH YEAR

becomes negative and is bounded away from zero when b becomes small. But this
implies that b reaches zero in finite time. Thus a path with b converging to zero
cannot be an equilibrium. But we know that constant-tax steady state equilibria,
when they exist, are unique, and also that ḃ is negative for small enough b. This
implies ḃ is negative for b < b̄ when the constant-tax steady state exists, and thus
that there is no equilibrium with constant τ and b < b̄.

When τ+1 ≤ 2G, so there is no steady state, it must also be that τ < G, because
G < 1. In that case the right-hand-side of (B.3) is negative, and therefore ḃ > 0.
Since the right-hand side of (B.3) is continuous, and there is no steady state, this
means ḃ must be positive for all values of b on any equilibrium path, and therefore
that there are no equilibria with constant τ and b decreasing.

This completes the argument that when τ is constant, the only competitive
equilibria that exist are steady states, and that the steady state for a given con-
stant τ is unique.

C. Uniqueness of the initial price level

The nominal government budget constraint is

(C.1) Ḃ = iB +GP − τLP .

If this holds at every moment, including the initial date, it implies that B0 is fixed
and cannot be affected by policy choices. But both our optimal non-stationary
and our fixed-τ equilibria, when they exist, imply an initial value for b = B/P
that does not depend on B. Thus our analysis implies that at time zero, the price
level jumps up or down to match B/P to the equilibrium value of b. Since the
equilibrium, when it exists, is unique, the initial price level is uniquely determined.

In our discussion of policy implications in the main text, we considered the
possibility of an instantaneous upward jump in B. It does seem plausible that
a large upward jump in B could be produced by a brief and very large transfer
payment. This would involve mailing checks to the public — which was actually
done during the pandemic. Such an action, if followed by a constant τ and G,
would affect only the initial price level, not the subsequent real equilibrium path.

The reverse policy action, a discrete downward jump in B0, seems less plausible.
Lump sum transfers are much easier to arrange than large lump-sum taxes or
wealth confiscations. In our simple representative agent model, a one-time lump-
sum tax, paid for by agents selling nominal bonds, might seem possible. But
with heterogeneous holdings of bonds, a uniform lump sum tax might not even
be feasible because of the wealth differences, while a uniform lump sum transfer
would not face such a problem.
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D. Equations defining the non-stationary optimal solution

The utility function logC − L can be written, using (16) and (18), as

(D.1) U(v, τ) = log(1− τ)− log(1 + 2γv)− (1 + γv)(1− τ)

1 + 2γv
−G .

We’re maximizing

(D.2)

∫ ∞

0
e−βtU(vt, τt) dt

by choosing the time path of τ , subject to the constraint (22).
The first order condition with respect to τ produces (25) via straightforward

algebra. Because the constraint involves v̇, though, the first order condition with
respect to v is more complicated. We derive it via a recursive sequence of algebraic
expressions.
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We already introduced, as R and S, the two factors of the v̇/v expression (22).

dS

dv
=

−2γ

(1 + 4γv)2
(D.3)

∂R

∂v
= 2γv · (1 + τ − 2G) + τ −G(D.4)

∂R

∂τ
= γv2 + v(D.5)

∂U

∂τ
= −ω +

1 + γv

1 + 2γv
(D.6)

ω =
1

1− τ
(definition)(D.7)

∂U

∂v
=

−2γ

1 + 2γv
+

(1− τ)γ

(1 + 2γv)2
(D.8)

η̇ = −v
∂U

∂v
+ η
(
β − v ·

(
R
dS

dv
+ S

∂R

∂v

))
FOC w.r.t. v in planner’s problem. η is multiplier on constraint

(D.9)

ω = A+B

A =
1 + γv

1 + 2γv

B =
(1 + γv)(1 + 2γv)vη

1 + 4γv

From FOC w.r.t τ . Equivalent to (25) in text.

(D.10)

dA

dv
=

−γ

(1 + 2γv)2
(D.11)

∂B

dv
= B

(
γ

1 + γv
+

1

v
+

2γ

1 + 2γv
− 4γ

1 + 4γv

)
(D.12)

∂B

∂η
= v(1 + γv)S(D.13)

ω̇

ω
=

((∂A
∂v

+
∂B

∂v

)
v̇ +

∂B

∂η
η̇

)
(1− τ)(D.14)

τ̇ = (1− τ)
ω̇

ω
(D.15)

This sequence of equations implicitly defines τ̇ as a function of v and τ alone and
can be fairly directly translated into computer code to evaluate that function. (In
fact, the code came first, and the equations displayed here are translations from
the code.) They can be used, though, to obtain some analytical results.
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E. Analytically provable properties of the solution path

Proposition E.1. Properties of the v̇ = 0 line
For any γ > 0, G ∈ [0, 1] and β > 0:

i. The v̇ = 0 locus in v, τ space defined by R = 0 defines a continuous, 1-1
function h mapping v to τ = h(v) and τ to v = h−1(τ).

ii. h′(v) < 0 and h′′ > 0.

iii. As τ approaches its upper bound τ = 1, the corresponding v = h(τ) ap-
proaches a positive limit, v̄, which is the greatest lower bound of v’s on the
v̇ = 0 locus.

iv. There is a lower bound τ = h(v) > 2G − 1, and as τ approaches this limit
from above v = h−1(τ) → ∞.

PROOF:
The R = 0 equation can be solved to give τ as a function of v:

(E.1) τ =
γv2 · (2G− 1) +Gv + β

γv2 + v
.

This delivers a value for τ for any v > 0 and is continuous and differentiable in
v for v > 0. Straightforward (though tedious) algebra shows that h′ < 0 and
h′′ > 0. This proves the first two claims in the proposition. The third follows
by observing that (A.2) has a unique positive real solution at τ = 1. The fourth
follows from the discussion in Appendix A, where we noted that existence of a
real, non-negative solution to R = 0 requires τ ≥ 2G− 1).
Proposition E.1 Asserts that the form of the v̇ = 0 line in Figures 1 and 4 is

generic: regardless of the values of G ∈ [0, 1), γ > 0, and β > 0, the slope is
negative and the plot is bounded away from the vertical axis. It is also bounded
below, but for small G values the lower bound on h(v) may be negative. The
upper bound of 1 on G follows from the fact that the τ ≥ 2G−1 condition, which
must hold everywhere on the τ = h(v) locus, implies τ ≥ 1 when G ≥ 1, which is
impossible.

Proposition E.2.

1) The v̇ = 0 locus and the τ̇ = 0 locus intersect at τ = 1.

2) Along the v̇ = 0 locus, as τ → 1,

a) τ̇ /(1− τ) → 0;.

b) ρ, the real return on debt, converges to β − γv̄2



8 MONTH YEAR

PROOF:
The value of v on the v̇ = 0 line at τ = 1 can be found by substituting τ = 1

into (A.2):

(E.2) v̄ =
1

4γ

(
−1 +

√
1 +

8γβ

1−G
.

)

This is always positive, since β > 0, γ > 0, and G ∈ [0, 1). From (D.7) and
(D.10), we can see that as τ → 1 with v = v̄, ω, and therefore also η converge
to infinity. Using this fact in (D.9), we can conclude that η̇/η → 0. This follows
because the first term on the right of (D.9) goes to zero when divide by η, while
the second term, divided by η and evaluated at v = v̄, becomes

(E.3) β − v̄ · 1 + 2γv̄

1 + 4γv̄
(4γv(1−G) + 1−G)

= β − (2γv̄2(1−G) + (1−G)v) = β −R(v̄, 1)− β = 0 ,

where R(v̄, 1) is just our original expression for R in (22), evaluated at v = v̄,
τ = 1 (which of course is by definition zero). This η̇/η → 0 result implies through
(D.10) that τ̇ /(1 − τ) → 0. So, though ω and η are growing without bound as
(v, τ) approaches v̄, 1, their growth rates are approaching zero. This proves the
first two assertions in the proposition. The third follows from the expression for
equilibrium ρ in (10), using the τ̇ /(1− τ) → 0 result.

Proposition E.3. On any path in (v, τ) space satisfying the Euler equations and
with v → 0,

1) τ̇ /(1− τ) → β;

2) ρ → 0.

PROOF:
It is easy to see from (D.9) that as v → 0, η̇/η → β. This means from (D.10)

that τ̇ /(1− τ) → β and thus from (10) that ρ → 0.
Note that this result is used in the text as part of the argument that such paths
violate the private agent’s transversality condition.

Proposition E.4. Along paths that satisfy the Euler equations, send τ to a finite
limit greater than 2G− 1, and make v → ∞, v reaches infinity in finite time.

PROOF:
Our assumption implies 1+τ−2G is eventually (as v grows), greater than some

positive number ε. Then, again for large enough v, from (22),

(E.4)
v̇

v
> 1

2 · v2ε− 1− β .v
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But then again for large enough v the quadratic term in v dominates and

(E.5)
v̇

v
>

v2ε

4
.

If we replace the inequality by equality in (E.5), the solution would be

(E.6) − 1

2v2
= t+ κ ,

where κ is an arbitary constant. To get a positive solution for v2, we need κ < 0,
so the solution has the form

(E.7) v =
1√

2 · (−κ− t)
,

which clearly reaches infinity at a finite value of t. Thus, for large enough v, the
time path of v satisfying the system dynamics is bounded below by a function
that goes to infinity at a finite date and thus itself must go to infinity at a finite
date.

F. Conditions for optimality of ρ = β

Saturating demand for liquidity, as suggested by the Friedman rule, is possible if
f(v) is zero over some interval (0, v∗) and then starts increasing. We can see that
there are conditions on f that imply that the optimal steady-state equilibrium
does not saturate liquidity demand, and also conditions under which saturating
liquidity demand is at least a local optimum among steady states. These results
assume that ϕ, lump-sum tax revenue, is constrained to be constant and below
G, so that positive τ is required in steady state.
Assume that A = 0, i.e. all government debt provides liquidity services. Then

the government budget constraint (12) implies that in steady state

(F.1) b =
τL+ ϕ−G

ρ
,

where ρ = i − Ṗ /P is the real return on government debt. From (10) we have
that in steady state

(F.2) ρ = β − f ′v2 .

Proposition F.1. If in a steady state equilibrium with constant τ > 0 and ϕ

a) f(v) = 0 for 0 ≤ v ≤ v∗,

b) ϕ < G and constant,
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c) f(v) and f ′(v) are both positive for v > v∗, and

d) f(v∗) = f ′(v∗) = f ′′(v∗) = 0,

the demand for liquidity is not saturated (i.e. v > v∗) in the optimal steady state.

PROOF:
Equations (9)-(11), (13), (F.1) and the definition v = C/b, when they have a

solution for C, v, b, L, ρ and L, define a steady-state equilibrium determined
by the constant fiscal parameters τ an ϕ. From (9) we can see that, with the
assumed conditions on f and its derivatives at v∗,

dC

dτ
=

dL

dτ
= −1 at v = v∗ .

The derivative of steady-state utility logC −L with respect to τ is then, because
τ > 0,

−1

1− τ
+ 1 < 0 ,

which implies that steady state utility can be increased by reducing the labor tax
rate.
Reducing taxes raises consumption and labor input, with these effects netting

out to increase utility. Reducing taxes also reduces the equilibrium level of real
debt b, which reduces f(v). The assumption that f ′′(v∗) = 0 means that this
latter effect is negligible for small reductions in taxes.
It is certainly possible to choose a form for f and parameter values so that the

optimal steady state equilibrium does set β = ρ. If the second derivative from the
right of f , f ′′(v∗) is large enough, transactions costs rise so rapidly as v increases
that the positive effect on transactions costs of reduced τ dominate, and v = v∗

becomes optimal.
Now we consider a version of the model exactly as in the main text, but with

the f(v) = γv form for transactions costs changed to f(v) = max(0, γ(v − v∗)).
This version of f is not differentiable at v∗, suggesting, because of proposition
F.1, that optimality of a steady state with v = v∗ (or, more precisely, v slightly
below v∗, so f(v) = 0 and ρ = β) is possible.
Equations (16)-(20) gather the FOC’s from the private sector optimization, the

government budget constraint, and the social resource constraint. They define
the constraints facing the optimizing tax-rate-setting authority. The change to
this new f(v) that allows satiation affects only (16) and (18), which become

C · (1 + 2γv − γv∗)(16’)

C(1 + γ(v − v∗)) +G = L .(18’)

Using these two replacement equations, we can replicate the algebra by which we
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derived (22) for the original model, which leads to

(22’)
v̇

v
=

1 + 2γv − γv∗

1 + 4γv − γv∗
(
γv2(1 + τ − 2G) + (τ −G)(1− γv∗)v − β

)
.

For small values of v∗, this equation is close to that defining the dynamic
constraint in the original model. Furthermore, the condition for the existence of
a steady state with fixed τ is the same, independent of v∗, namely τ > 2G − 1.
It is then easily checked as in the main model that the τ̇ = 0 locus intersects the
v̇ = 0 locus at τ = 1. Thus as before there will be a single path that both satisfies
the Euler equations and does not violate feasibility of transversality conditions,
and this path will make v approach a positive limit (slightly larger than for the
v∗ = 0 case) and make τ converge to 1.

By setting a constant v < v∗, transactions costs disappear from the model,
and it might be thought that such a steady state could improve on the interior
solution. However, in steady state it must be that ρb = τL − G, i.e. that the
interest on the debt must be financed by the excess of taxes over spending. With
transactions costs gone, we will have ρ = β and C = 1− τ . So what we require is

(F.3) βb = τ(1− τ +G)−G =
1− τ

v
,

which implies v = β/(τ − G) > β/(1 − G). Values of v lower than this make
constant-tax equilibrium impossible. But this lower bound on v∗ is also an upper
bound on v̄, the limiting value of v along the interior solution path. Thus a steady
state with v < v∗ is possible only for values of v∗ large enough that the interior
solution path intersects v = v∗. There may be parameter values for which such a
steady state is the limit of an optmial path, but it will not be for a “small” value
of v∗.

G. This paper’s model with Chari-Kehoe initial conditions

The Chari and Kehoe assumption on initial conditions is that the government
has neither assets nor liabilities as it enters time 0, but that it can trade liquidity-
providing debt B for real bonds issued by the public that do not provide liquidity
services. Using A to denote the real bonds (note that earlier in the paper we used
A for nominal bonds) that provide no liquidity services, it helps keep notation
clear to introduce a net wealth variable

(G.1) W =
B

P
+A .

The Chari-Kehoe initial condition is then W0 = 0. This requires, of course, that
A0 ≤ 0, since we continue to assume B ≥ 0 is a constraint. The private sector’s
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budget constraint is then

(G.2) Ẇ = rW + C · (1 + γv)− (1− τ)L− (r − ρ)
B

P
,

where r is the rate of return on A and ρ = i − Ṗ
P is, as before, the real interest

rate on government debt.

The private objective function is (1) as before. The private sector Euler equa-
tions then reduce to

C =
1− τ

1 + 2γv
(G.3)

r − ρ = γv2(G.4)

r =
−τ̇

1− τ
+ β(G.5)

These are derived from the Euler equations as in the discussion of the main model
in the text.

The government’s problem has these private FOC’s as constraints, plus a gov-
ernment budget constraint and social resource constraint:

GBC : Ẇ = rW +G− τL− (r − ρ)b(G.6)

SRC : C(1 + γv) +G = L .(G.7)

The constraints allow us to rewrite the whole system in terms of τ , W and v
alone:

max
τ,v

∫ ∞

0
e−βt

(
log(1− τ)− log(1 + 2γv)− (1− τ)(1 + γv)

1 + 2γv
−G

)
dt(G.8)

subject to

Ẇ = (β − τ̇

1− τ
)W + (1− τ)

(
G− τ(1 + γv)− γv

1 + 2γv

)
.(G.9)

Though the equations look complex, it is easy to verify that the government can,
by setting τ̇ = 0, τ = G, and v = 0, generate a steady-state equilibrium with
L = 1, W = 0, C = 1 − G, and ρ = r. In other words, a steady state satisfying
the Friedman rule (r = ρ and v = 0) is possible. With this notation, v = 0 no
longer appears as an infeasible limit, because we now have A entering only via W
and b entering only via v, with both v and W zero in this steady state.

While this stationary equilibrium does not achieve the optimum obtainable with
lump-sum taxes and no transactions costs (γ = 0), which sets L = 1+G, C = 1,
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it does achieve the highest possible level of steady state utility achievable when
γ = 0 and the only tax available is the labor tax τ . In other words, the Friedman
rule, in a model with γ > 0, achieves the same optimal steady state that could
be obtained with γ = 0.
It is possible to check, though we don’t go through the details here, that the

FOC’s for the government’s dynamic problem are satisfied at this Friedman-rule
steady state. Because the slope of our f(v) = γv function is positive at v = 0, the
v ≥ 0 constraint binds and the Euler equation with respect to v doesn’t apply,
but the W and τ Euler equations are satisfied.
What happens in this equilibrium is that the private sector bonds held by the

government provide a steady flow of income rA to the government that is always
weakly greater than its interest expenses ρb, allowing τL ≤ G. Raising τ to τ = G
brings the economy to the Friedman rule equilibrium, which is better than any
other steady state. Since the initial b can be chosen freely, there is no transition
path to the steady state with this policy.
Along this equilibrium path there is no commitment problem, because the opti-

mizing policy maker chooses the same bt at any start date t. However, Chari and
Kehoe motivate the assumption that government net wealth at t = 0 is zero by
noting that at t = 0, if there were any net debt, it would be optimal to repudiate
it. If this is possible at dates later than t = 0, the government must be committed
not to take advantage of this possibility. Welfare can always be improved by an
unanticipated, one-time, repudiation of existing b, followed by issuing new b by
buying A-type debt, thus increasing W and allowing lower equilibrium τ .
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