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Abstract. Starting from Robbins (1952), the literature on experimentation via multi-armed

bandits has wed exploration and exploitation. Nonetheless, in many applications, agents’

exploration and exploitation need not be intertwined: a policymaker may assess new poli-

cies different than the status quo; an investor may evaluate projects outside her portfolio.

We characterize the optimal experimentation policy when exploration and exploitation

are disentangled in the case of Poisson bandits, allowing for general news structures. The

optimal policy features complete learning asymptotically, exhibits lots of persistence, but

cannot be identified by an index à la Gittins. Disentanglement is particularly valuable for

intermediate parameter values.
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1 Introduction

In various applications, decision-makers navigate a dynamic landscape by simultaneously

taking actions and gathering insights about their environment. Policymakers evaluate the

performance of new policies while managing existing ones. Investors assess their financial

portfolios, gauging immediate returns and future prospects. Employees navigate their

career paths by exploring opportunities within their organization or beyond.

The seminal work of Robbins (1952), Gittins (1979), and Gittins and Jones (1979), pro-

posed a dynamic model that fuses learning with decision-making. In their classical multi-

armed bandit problem, each action taken by an agent provides insights solely into that

specific action’s effectiveness. Like a bet on a slot machine—where one must pay to learn

the outcome—optimal choices balance the benefits of learning about the action (explo-

ration) and its consequent payoff benefits (exploitation).

We propose a framework for studying settings in which exploration and exploitation

are, and can be, untangled. We leave behind the slot machine model, and instead consider

decision-makers who can learn about choices they might not immediately pursue. We

characterize the resulting optimal policy and illustrate when the ability to disentangle

exploration from exploitation is especially advantageous.

In our model, an agent encounters a recurring decision between two uncertain projects.

These projects might be policies, stocks, job prospects, etc. To simplify, we assume that

each project offers either a positive flow payoff if successful (good project) or no payoff if

unsuccessful (bad project). The quality of each project is determined independently at the

outset, with prior probabilities known to the agent.

In each period, the agent decides which project to exploit; that is, which policy to

implement, which investment to make, which job to choose, etc. Her choices determine

the overall payoff, calculated as the discounted sum of rewards obtained from exploitation.

The agent learns incrementally throughout the process: at the start of each period, she

possesses a unit of attention, or exploration, which she allocates between the two projects.

When exploring a project, the agent can get conclusive information about its quality, which

arrives at a Poisson rate. The arrival rate may differ depending on the explored project and

whether it is good or bad.

In contrast to the traditional multi-armed bandit framework, our model’s operating

assumption is that the agent can gather information through exploration, but not through

exploitation. However, in many real-world scenarios, the exploited project yields some

valuable data. To accommodate this, we introduce a constrained version of our model

where a predetermined portion of exploration is allocated to the exploited project each

period. When the predetermined portion is set to 0, exploration and exploitation are en-
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tirely disentangled. Conversely, when this portion is set to 1, exploration and exploitation

are fully entangled and our environment admits several settings studied in the literature

if we assume further that one project is known to be good. Specifically, when news arrives

only about good projects at positive rates, this aligns with the Keller, Rady, and Cripps

(2005) (KRC) setting. When news arrives exclusively about bad projects at positive rates,

this mirrors the Keller and Rady (2010) (KR) setting.1

We first show that, whenever some portion of exploration can be dedicated to an unex-

ploited project, an optimizing agent exploits the realized best project asymptotically. Intu-

itively, if there is any room for the agent to be swayed by information toward exploiting a

different project than the one she already exploits, any level of disentanglement would al-

low her to gain that information in the long run. The asymptotic optimality in our setting

underscores a fundamental difference from the conventional setting, with full entangle-

ment, where it is well-known that the agent’s exploitation need not converge to the ex-post

optimal project.

We start with the special case in which one project is known to be good, and therefore

safe, as in KRC and KR, although we allow for arbitrary Poisson arrival rates of news. In

this case, the agent explores the uncertain, or risky, project as much as possible. With any

level of entanglement, the agent’s exploitation choices constrain her exploration. She thus

faces the standard exploration / exploitation dilemma. We show that the optimal strategy

involves setting a threshold on the posterior probability of the risky project’s favorability.

When this threshold is surpassed, the agent chooses to exploit and further explore the

risky project; otherwise, she opts for the safe project, minimally exploring it using the

predetermined portion of her attention budget.

In Proposition 1, we demonstrate that the optimal threshold depends only on the maxi-

mum between the arrival rates of good and bad news. In general good news settings, where

good news arrives faster than bad news, receiving no news makes the agent increasingly

pessimistic. In general bad news settings, where bad news arrives more rapidly, receiving

no news makes the agent increasingly optimistic. In either case, the analytical descrip-

tion of the optimal threshold is identical. The optimal policy exhibits different features,

naturally. In particular, as in KRC and KR, with a high enough initial prior that the risky

project is good, absent news arrival, the agent ultimately switches her exploitation in good

news settings, but never does so in bad news settings.

The optimal policy changes when the returns to both projects are uncertain. To illumi-

nate the forces within our model, we focus on scenarios where exploration and exploitation

are entirely disentangled. Then, the agent optimizes exploitation by favoring the myopi-

1While special, these settings have been used to study a variety of applications, including delegation prob-
lems (Hörner and Samuelson, 2013; Guo, 2016), experimentation by committee (Strulovici, 2010), dynamics
of discrimination (Bardhi, Guo, and Strulovici, 2020), and many others; see our literature review.
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cally optimal project at any given moment. However, determining the optimal exploration

strategy is less straightforward and does not adhere to an index policy akin to Gittins’.

We begin by examining balanced news settings, where both good and bad news arrive

at equal rates for each project. In such settings, the passage of time without any news does

not provide any insight into the quality of a project. Consequently, the optimal policy

remains constant, and the primary consideration is which project to explore at the outset.

In Proposition 2, we show that the optimal exploration strategy is determined via

the comparison of a particular formulation of the information value associated with each

project. This value is influenced not only by the rates at which news arrives but also by

the relative rewards and prior probabilities assigned to each project’s success. Specifically,

when one project is significantly more likely to succeed compared to another, the infe-

rior project may hold greater information value, as there is a higher probability that new

information could lead the agent to switch the exploited project. Our characterization

highlights two key deviations from the optimal policy observed in the traditional, fully

entangled environment. First, an increase in the prior probability of a project’s success

may prompt the agent to explore the alternative project in our environment, but not in the

classical environment. Second, the optimal exploration strategy is intricately linked to the

interplay between the parameters of both projects and, as noted, cannot be described via

a separable index.

In general good news settings, Proposition 3 shows that the agent still optimally ex-

hibits a lot of persistence in her exploration. Absent news, the agent switches which project

she explores at most once. This switch occurs only if the initially explored project aligns

with the myopically optimal one, i.e., the project promising higher expected payoffs.

This outcome is rooted in a fundamental principle of information economics: valuable

information is actionable and influences which project is exploited. In general, actionable

information manifests in two forms, either adverse news regarding the exploited project,

or favorable news concerning the alternative project. To glean intuition for the persistence

of optimal exploration, consider pure good news settings, where only good news arrives

at a positive rate about either project, as in KRC. In such settings, in the short run, action-

able information materializes only through positive news about the unexploited project.

If the agent explores the unexploited project, absent news, she becomes increasingly pes-

simistic about the explored project. Consequently, she has no incentive to switch either

her exploited project or her explored project.

The optimality of persistent exploration starkly contrasts with predictions derived

from the classical, fully entangled environment. In the classical good news setting, as

the agent explores and exploits a project, her confidence in its potential diminishes grad-

ually, leading to a reduction in its corresponding Gittins index. Eventually, the indices for
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both projects align, prompting the agent to alternate between the projects until more infor-

mation emerges, hence switching infinitely often. Subsequently, upon receiving positive

news about either project, the agent indefinitely explores and exploits that project, effec-

tively terminating further information gathering. In particular, with some probability, the

agent ultimately exploits the project deemed inferior ex-post.

In general bad news settings, Proposition 4 illustrates that optimal exploration strongly

depends on projects’ potential rewards. Once the agent embarks on exploring the high-

reward project, she remains committed to it without changing her exploration unless in-

formation arrives. Furthermore, in the absence of news, the agent inevitably explores the

high-reward project at some point. Thus, similar to the dynamics observed in good news

settings, the agent may switch her exploration at most once without news arrival.

To gain intuition, consider pure bad news settings, where only bad news arrives at

positive rates, as in KR. In such settings, when the agent explores the high-reward project

and no news is received, her confidence in the project progressively grows. Only negative

news regarding that project would prompt her to switch her exploited project. Therefore,

it remains optimal to continue exploring the high-reward project. One might question

why the same logic wouldn’t apply to the low-reward project. For the low-reward project,

even if the agent maintains a sufficiently optimistic outlook, positive information about the

high-reward project could still sway her exploitation choice. The only means of acquiring

such information is by exploring the high-reward project for an extended period.

The distinction from the classical environment hinges on the nature of news arrival.

In good news settings, the separation of exploration from exploitation results in a higher

level of persistence in the optimal policy. Conversely, in bad news settings, there tends

to be comparatively less persistence. Indeed, in the classical bad news environment, once

the agent initiates exploration and exploitation of a project, the absence of news fosters a

growing optimism towards the project. Thus, regardless of the project’s potential reward,

the agent optimally refrains from switching to an alternative.

In the settings we consider, the payoff benefits of disentanglement are most pronounced

when parameters fall within intermediate ranges: the discount rate, arrival rates of news,

and initial beliefs regarding the viability of the projects under consideration. Collectively,

our results show that when information and actions occur in sync, the ability to disentan-

gle the two not only impacts behavioral predictions, but carries important implications for

potential payoffs.
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2 Related Literature

The multi-armed bandit problem was likely initially posed by Thompson (1933) in the

context of clinical trials. Starting from Robbins (1952), the statistics literature has offered

insights on the features of optimal policies. Gittins (1979) and Gittins and Jones (1979)

present the first general index-based optimal policies. Gittins, Glazebrook, and Weber

(2011) offer a survey of ensuing results. As already noted, the special case of Poisson

bandits was introduced by Keller et al. (2005) (KRC) and Keller and Rady (2010) (KR),

assuming two arms, only one of which yields uncertain rewards.

The basic multi-armed bandit setting has been utilized for a wide array of applications

in economics, ranging from monopoly pricing decisions (Rothschild, 1974), to labor mar-

ket choices and matching (Jovanovic, 1979; Miller, 1984), to venture capital (Bergemann

and Hege, 1998), to the design of recommender systems (Che and Hörner, 2018), to team

experimentation (Bolton and Harris, 1999; Strulovici, 2010, in adition to KRC and KR); for

a survey, see Bergemann and Valimaki (2006).2

Our paper also relates to the literature on dynamic information acquisition, initiated

by Wald (1947). In the most basic model, an agent can acquire costly signals in sequence,

and determine when to stop information collection and take a decision. In our setting, the

cost of exploring one project is the option value of exploring the other. Unlike the classical

model, the cost is therefore changing and endogenous. Furthermore, while our setting is

dynamic, it does not correspond to a stopping problem per se.3

The idea that decision makers may be able to attend to or acquire information only up

to a limit also appears in the rational inattention literature, see Sims (2003) and Maćkowiak,

Matějka, and Wiederholt (2023)’s survey. Recent work considers dynamic attention al-

location. For example, Che and Mierendorff (2019) consider an environment á la Wald

(1947)—a stopping problem—in which a decision maker acquires information from differ-

ent news sources, each providing conclusive news about the underlying state at a Poisson

rate, prior to making an irreversible binary decision. Since the rates at which news arrives

from either source may depend on the underlying state, the optimal policy balances the

speed at which either news source delivers news and its “bias,” a trade-off different than

the one underlying our agent’s problem. Liang, Mu, and Syrgkanis (2022) also study a

2The analysis in Che and Hörner (2018) relates to the special case of one safe project in our environment,
which we discuss in Section 4. Eliaz, Fershtman, and Frug (2024) consider an extension of the basic model,
where bandits—or tasks, in their framework—evolve when attended to, and payoffs also depend on unat-
tended tasks. There is also recent empirical work that uses the basic multi-armed bandit setting in the context
of pharmaceutical demand and physician prescribing behavior (see Crawford and Shum, 2005; Currie and
MacLeod, 2020; Dickstein et al., 2021) and in the context of research and development (Zhuo, 2023).

3Damiano, Li, and Suen (2020) study the KRC setting where an agent can also acquire costly auxiliary
information, disconnected from exploitation, which produces conclusive news at Poisson rates. They show
ways by which the information optimally acquired depends on the agent’s posterior.
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variation of the Wald problem, where a decision maker allocates a fixed attention budget

across multiple sources of information to learn about a decision-relevant state. Informa-

tion sources are diffusion processes whose unknown drift is an attribute that contributes

linearly to determine the state. In the optimal policy, the decision maker initially allo-

cates all attention to the most informative source, then gradually incorporates additional

sources until, eventually, attends to all sources.

There is also a literature in computer science that takes an algorithmic approach to

identifying which arm is most desirable in a multi-armed bandit problem. Bubeck, Munos,

and Stoltz (2011) is perhaps the most conceptually related to our paper. They focus on

regret-minimizing exploration algorithms. There is no simultaneous exploitation, and the

objective is the difference between the average payoff of the best arm and the average pay-

off obtained by the algorithm’s recommendation. See also Audibert, Bubeck, and Munos

(2010) and the literature that followed.

3 The Model

An agent allocates exploration and exploitation resources between two projects, L and H ,

in continuous time. Project z = L,H is good with probability pz and bad with the comple-

mentary probability 1 − pz. The quality of the two projects is determined independently.

If project z is good, it pays a flow reward of Rz > 0; If project z is bad, it pays 0 forever. We

assume RH > RL > 0. We also assume that pL,pH > 0 and pH < 1 so that there is meaningful

uncertainty about which project is superior.

As in KRC, we assume that the agent has a unit of investment to allocate, capturing the

exploitation aspect of the agent’s choice. At any moment, the agent’s instantaneous reward

from investing kz ≥ 0 in exploiting project z = L,H is given by:

kLR̃L + kH R̃H ,

where kL + kH = 1 and R̃z denotes the realized rewards from project x = L,H . We assume

the agent’s exploitation policy is measurable with respect to the information available at

any time. As is standard, payoffs are discounted at a fixed rate r > 0.4

Analogously, at any moment, the agent allocates a unit budget of attention, or informa-

tion collection resources, across the projects. This is the exploration aspect of the agent’s

choice. If the agent spends a fraction αz > 0 of her attention budget exploring project

z = L,H , she may receive conclusive news about project z. Specifically, if project z is good,

4We later show that for most of our analysis, the agent optimally chooses kz ∈ {0,1} for z = L,H . We
maintain this greater generality in order to contrast some of our results with the classical, fully entangled
setting, where interior investments are sometimes utilized in the optimal policy.
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the agent receives good news—a conclusive signal indicating that the project is good—at a

Poisson rate αzλ
g
z (and no news otherwise). Similarly, if project z is bad, the agent receives

bad news—a conclusive signal asserting the project is bad—at a Poisson rate αzλ
b
z . We

assume max{λg
z ,λb

z } > 0 and that sign(λg
H − λ

b
H ) = sign(λg

L − λ
b
L), with the convention that

sign(0) = 0. That is, the agent has opportunities to learn and the information structure

is similar across the two projects. As for exploitation, we assume the agent’s exploration

policy is measurable with respect to the information available at any time.

Whenever λ
g
z − λb

z > 0 for z = L,H , good news arrives at a higher rate than bad news.

We refer to such environments as good news settings. Absent any news, the agent becomes

increasingly pessimistic: no news is bad news. A special case corresponds to the frequently

studied good news setting of KRC, which we term pure good news, where λ
g
z > 0 and λb

z = 0

for z = L,H . Conversely, whenever λb
z − λ

g
z > 0 for z = L,H , bad news arrives at a higher

rate than good news. We refer to such settings as bad news settings. Absent any news, the

agent becomes increasingly optimistic: no news is good news. A special case corresponds

to the frequently studied bad news setting of KR, which we term pure bad news, where

λb
z > 0 and λ

g
z = 0 for z = L,H . We refer to settings in which good and bad news arrive at

precisely identical rates, λg
z = λb

z for z = L,H , as balanced news settings. In balanced news

settings, without the arrival of news, the agent’s posterior belief that the explored project

is good does not change. These settings are useful as central reference cases around which

we construct some of our proofs.

We assume that payoffs, which depend only on exploitation choices, are unobserved

throughout the decision-making process. This assumption is a natural benchmark in pur-

suit of our goal of understanding the consequences of disentangling information collec-

tion from payoff-relevant actions. The assumption is also a reasonable approximation in a

number of applications. For instance, the consequences of particular policy choices may

become apparent only in the fullness of time.5 Similarly, returns to long-run financial

investments—like retirement savings—may provide weak signals regarding the future

promise of underlying stocks, and investors may explore features of a variety of stocks,

independent of their portfolio. Financial investment in charitable causes also frequently

provides limited information on the charities’ value.6 Last, employees can certainly ob-

serve their wages, but absent explicit queries, may not learn about their future prospects

in their place of employment. Furthermore, employees can explore opportunities in their

existing job, or elsewhere.

Certainly, in many applications, rewards from exploitation choices do provide some

5Indeed, in the U.S., the Council of Economic Advisers is charged with “advising the President on economic
policy based on data, research, and evidence”; see https://www.whitehouse.gov/cea/.

6In fact, there are various resources designed to assist donors explore various charities; see, e.g., https:
//www.charitynavigator.org/.
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information about the quality of the undertaken projects. In order to capture such en-

vironments, as well as relate the commonly utilized exploration/exploitation model to

ours, we consider the α-constrained decision process. In the α-constrained decision process,

whenever the agent exploits project z = L,H , she must allocate at least α to exploring it:

αz ≥ α. When α = 1, the agent must explore the project she exploits, corresponding to the

standard exploration/exploitation trade-off. When α = 0, exploration and exploitation are

fully disentangled.

Throughout, we characterize optimal policies up to measure-0 sets of time.

We begin with a straightforward result that highlights the fact that the option to dis-

entangle exploration from exploitation, corresponding to any α < 1, has important impli-

cations on outcomes.

Proposition 0 (Asymptotic Optimality). For all α < 1, the agent exploits the best project
asymptotically.

Proposition 0 offers a fundamental contrast between our environment and the standard

setup, where it is well known that the agent’s exploitation need not converge to the ex-post

optimal project.

The proof of Proposition 0 holds for any number of projects and any payoff process.

To prove this result, we need to show that the agent will eventually explore projects for

a sufficiently long time so as to learn to exploit the best one. Now, an impatient agent

might prefer an exploration strategy that is more efficient in the short run. Assume, for

instance, that pL is close to 1, while pH , λg
H , and λb

H are low. In the long run, the agent

benefits from exploring project H . In the short run, however, exploring project H is not

useful since, in expectation, it would take a long time to conclude that project H is good

with sufficient likelihood to exploit it. In fact, in the classical environment, if project L

is known to be good, a sufficiently impatient agent would never learn that project H is

good as well. With α < 1, the impatient agent may still explore project L initially: if λb
L

is sufficiently high, the agent might initially explore project L since bad news will lead

her to switch her exploited project. However, as we show in the proof, at some point, the

short-run benefit from continuing to explore project L diminishes enough so that even an

impatient agent will prefer to explore project H .

Proposition 0 also underscores the importance of our assumption that the agent is long-

lived. If we replace our agent with a sequence of short-lived agents, each of whom lives

for a fixed duration, then it may be that they all prefer to explore project L since neither

will stick around long enough to benefit from exploring project H . Liang and Mu (2020)

call this phenomenon a learning trap.
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4 One Safe Project

As already noted, a heavily studied exploration/exploitation setting is that introduced by

KRC, where project L is “safe:” pL = 1. This setting is used in many applications and is a

special case of our environment.

4.1 Optimal Policy with a Safe Project

With one safe project, optimal exploration is trivial. Because uncertainty is present only

for project H , the agent explores project H as much as she can (with at least 1 − α units

of attention).7 The choice of exploitation is less obvious. A myopic agent would exploit

project H when it has a higher expected value, whenever her posterior that project H is

good exceeds pM = RL
RH

. With α = 0, the agent exploits project H only when it is my-

opically optimal, namely when pH ≥ pM . When α > 0, exploiting project H garners an

informational advantage as it allows the agent to explore project H and learn at higher

rates: she can dedicate her full attention to project H instead of only a fraction 1−α of it.

The agent may then exploit project H at even lower posteriors than pM , an instance of the

exploration/exploitation trade-off. The following proposition characterizes the optimal

exploitation strategy.8

Proposition 1 (One Safe Project: Optimal Exploitation). Let λ = max{λg
H ,λ

b
H }. For any

α ∈ [0,1], the agent optimally exploits project H whenever her posterior that project H is good
exceeds p̄ (α), where

p̄ (α) =
(r +λ (1−α))RL

(r +λ)RH −λαRL
.

The cutoff p̄(α) ≤ RL
RH

is decreasing in α and RH /RL, and increasing in r. When α > 0, it is
decreasing in λ.

Although the cutoff p̄ (α) does not depend on whether good news or bad news arrive at

higher rate, provided the maximal news arrival rate λ remains constant, the optimal policy

differs between the two settings. In good news settings, if no news arrives, any amount of

exploration of project H leads the agent to grow increasingly pessimistic about project H .

If the agent starts by exploiting project L, she switches to exploiting project H only upon

receiving good news. If the agent starts by exploiting project H , after a sufficiently long

7The results are the same if there is an exogenous baseline arrival rate of news on the risky project that is
independent of the exploited project, where the exploitation decision generates additional information.

8The result is essentially implied by a combination of results in Che and Hörner (2018), although they
study a different set of questions. Our method of proof is different and, we believe, instructive.
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time without news, the agent becomes sufficiently pessimistic about that project that she

switches to exploiting project L. In contrast, in bad news settings, if no news arrives, any

amount of exploration of project H leads the agent to grow increasingly optimistic about

project H . Therefore, if the agent starts by exploiting project L, absent bad news, she

switches to exploiting project H at some point. If she starts by exploiting project H , she

never switches unless bad news arrives.

The KRC and KR cutoffs correspond to p̄ (1). As α decreases, the link between explo-

ration and exploitation is relaxed and p̄ (α) approaches the myopic cutoff pM . When RH
RL

increases, gaining information on whether project H is good becomes more valuable and

the cutoff p̄ (α) moves away from pM . Last, as λ increases, exploration of project H be-

comes more appealing as it is expected to yield a conclusive signal more quickly. Again,

the optimal cutoff p̄ (α) moves away from pM .

In order to glean intuition for the derivation of the optimal cutoff, consider a good

news setting. For any posterior p such that pRH ≥ RL, it is certainly optimal for the agent

to exploit project H : it generates higher expected payoffs and delivers more information.

Assume then that pRH < RL. Call σL the strategy that specifies exploiting project L until

news, and σ∆ an alternative strategy that prescribes exploiting project H for a short time

interval ∆ > 0 before returning to exploiting project L in the event that there is no news.

The difference in payoffs between these two strategies is given by:

−∆r (RL − pRH ) + (1−∆r)pλ∆α r
r + (1−α)λ

(RH −RL) +O(∆2). (1)

The first term in equation (1) is the expected flow payoff difference between exploiting

projects L and H . The second term is the expected discounted present value of information

that reflects the possibility that, in the time interval ∆, the agent receives good news and

optimally switches to exploiting project H . The arrival rate of bad news appears only in

a term corresponding to the discounted flow payoff during the interval of length ∆ if bad

news is received from project H (the agent intends to switch back to project L absent news).

Since the probability of such news, when project H is bad, is O(∆), the corresponding term

is O(∆2). At the cutoff p̄ (α), taking limits as ∆→ 0, our proof illustrates that the expression

in equation (1) approaches 0. This yields the formula appearing in Proposition 1.

An analogous construction holds for bad news settings, and the resulting cutoff de-

pends on the maximal arrival rate for both good news and bad news settings. In particular,

the cutoff corresponding to λi
H > λ

j
H , where i, j ∈ {g,b} is the same as the cutoff correspond-

ing to a setting with λi
H and λ

j
H = λi

H − ϵ, with ϵ > 0 as small as desired. It follows that the

cutoff corresponding to a good news setting with good news arriving at a rate of λ is the

same as the cutoff for a balanced news setting with arrival rate of λ. Similarly, the cutoff
corresponding to a bad news setting with bad news arriving at a rate of λ is also the same
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Figure 1: Payoff value of disentanglement for (a) pure good news settings, and (b) pure
bad news settings when RL = 10, RH = 15, and λH = 5

as the cutoff for a balanced news setting with arrival rate of λ. Thus, the cutoff formulas

for both good and bad news settings must coincide.

4.2 Payoff Consequences of Disentanglement

Relaxing the entanglement constraint by reducing α can only improve the agent’s expected

payoff. We now identify features of the environment that make disentanglement particu-

larly valuable.

Certainly, when RH /RL increases, the benefits of learning without forgoing payoffs are

larger. Therefore, the value of disentanglement increases in RH /RL. In what follows, we

inspect the dependence of payoffs on other parameters.

For any project rewards RL and RH , denote by Π(pH , r/λ;α) the agent’s expected payoff
for the environment’s parameters, an analytical formulation of which appears in the Ap-

pendix. To quantify the impacts of disentanglement, we focus on the two extreme cases,

α = 0 and α = 1, and consider the normalized payoff difference:

∆Π(pH , r/λ) =
Π(pH , r/λ;0)−Π(pH , r/λ;1)

pHRH + (1− pH )RL
,

where the denominator represents the ex-ante value of the full information payoff and

serves as a natural normalization factor. In Figure 1, we depict ∆Π(pH , r/λ) for various

parameters, focusing on the pure good and bad news settings, where λH = max{λg
H ,λ

b
H }

and 0 = min{λg
H ,λ

b
H }.
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As can be seen, the benefit of disentanglement is non-monotonic with respect to the

discount rate r, and equivalently, with respect to the arrival rate λ of good news. Intu-

itively, when the agent is very patient (r → 0) or when news arrives rapidly (λ → ∞),

regardless of α, the agent can accumulate information with no substantial payoff conse-

quences. Even in the classical environment, the agent may suffer payoff losses because she

exploits the risky project for a long time, but the payoff consequences are minimal when

the agent is very patient. The benefit of disentanglement is therefore small. When the

agent is very impatient (r→∞) or when news arrives slowly (λ→ 0), short-run, or myopic

payoffs approximate the agent’s payoffs regardless of the level of disentanglement, which

hence has little impact. It follows that the payoff consequences of disentanglement can be

meaningful only for intermediate values of r/λ.

As Figure 1 illustrates, the effects of pH are also non-monotonic. Consider first good

news settings (depicted in the left panel). Suppose pH ≤ p̄ (1), so that the probability that

project H is good is lower than the cutoff in the classic environment. Regardless of the

disentanglement level α, project L is exploited. The value of disentanglement is then only

due to the ability to continue collecting information; it is increasing in the prior pH that

project H is good. When pH > p̄ (0) = RL/RH , regardless of the disentanglement level α,

project H is explored and exploited. Disentanglement is then beneficial only due to the

continuation value in the eventuality that no news arrives and the posterior falls below

RL/RH when a sufficiently long period transpires without news. The probability of no

news is decreasing in pH . Thus, the value of disentanglement is decreasing in the region

(p̄ (0) ,1). Consequently, the ability to disentangle exploration from exploitation is most

valuable in the (p̄ (1) , p̄ (0)) region. In this region, when α = 1, the agent exploits a sub-

optimal project for its exploration value. Disentanglement limits the payoff loss associated

with such exploration.

Consider now bad news settings (depicted in the right panel). As in good news settings,

when pH < p̄ (1), regardless of α, project L is exploited. The value of disentanglement is due

to the information it affords. This value is increasing in the prior likelihood that project H

is good. When pH > p̄ (1), in the classical environment, with α = 1, the agent explores and

exploits project H . Absent news, the agent becomes increasingly optimistic and continues

exploring project H . This persistence in the explored and exploited project generates a

kink in payoffs, noted by KR, which yields the kink seen in Figure 1. Disentanglement

leads the agent to exploit project L for posteriors higher than p̄ (1), when its expected

payoffs are higher than those from project H . The benefit from doing so decreases with

the probability that project H is, in fact, the better project. When pH > p̄ (0), regardless of

the level of disentanglement, the agent explores and exploits project H and switches the

project she exploits only upon seeing bad news. Thus, expected payoffs are independent

12



of α in the region (p̄ (0) ,1).

The following corollary summarizes our discussion.

Corollary 1 (One Safe Project: Comparative Statics). The disentanglement value∆Π(pH , r/λ)

is non-monotonic in each of its arguments. It is maximized at p∗H such that p̄ (1) < p∗H < p̄ (0) in
good news settings and at pH = p̄ (1) in bad news settings.

In terms of the degree of disentanglement α, increasing it tightens the agent’s con-

straint, and this reduces her expected payoffs. However, the relationship between expected

payoffs and α is neither concave nor convex. To see this, consider, for instance, the bal-

anced news setting. For any pH ∈ (p̄ (1) , RL
RH

), there exists α∗ such that p̄ (α∗) = pH . Using

the monotonicity of p̄ (·) in Proposition 1, at the outset, the agent exploits the risky project

H for any α > α∗. Furthermore, in a balanced news setting, the only way the agent up-

dates her posterior, and changes her exploited project, is by receiving news. Therefore, the

agent’s expected payoffs are constant in α for α > α∗. However, for α < α∗, expected pay-

offs are strictly decreasing and concave in α; see the Appendix for details.9 In particular,

expected payoffs are neither concave nor convex in α over the interval [0,1].

5 Two Risky Projects

We now analyze the general case of two risky projects, where pL,pH ∈ (0,1). For tractabil-

ity, we assume full disentanglement, α = 0. In this case, the agent’s optimal exploitation

choices are simple: she always chooses the myopically optimal project, which we term

the favorable project. That is, project x is favorable, while project y is unfavorable, if

pxRx > pyRy . Both projects are favorable when their expected values coincide. The focus

of our analysis is, therefore, on the characterization of optimal exploration. We show that

the optimal policy entails very few switches of either the exploited or the explored project.

However, unlike the special case in which one project is safe, the information structure

has a substantial impact on the characterization of the optimal policy. Furthermore, the

optimal policy cannot be characterized via an index à la Gittins (1979).

We divide our analysis into three subcases. We first discuss balanced news settings.

We then consider good news settings. We conclude with our analysis of bad news settings.

In all these settings, if the agent receives news that project H is good, then there is no

9When λ = λ
g
H = λbH and α < α∗, the resulting expected payoffs are given by:

RL +
λ(1−α)

r +λ(1−α)
pH (RH −RL),

which is concave in α.
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additional value of exploration. If the agent receives news that project L is good, the opti-

mal policy proceeds as described in Section 4. Therefore, in what follows, we emphasize

features of the optimal policy before news arrives.

5.1 Balanced News Settings

We start by analyzing balanced news settings in which λb
z = λ

g
z = λz for z = L,H . The

analysis of these settings proves instrumental for the characterization of optimal policies

in good and bad news settings, which follow. Substantively, while rarely studied in the

literature, these settings reflect environments in which the arrival rate of news does not

depend on its valence. For example, when assessing the efficacy of a menu of medical

treatments using clinical trials, the arrival rate of news depends on the number of patients

and the rate at which they are treated, but not necessarily on the quality of the treatments

per se. Similarly, when researching the promise of an investment opportunity, the arrival

rate of news often depends on the scope and speed of investigation, not explicitly on the

quality of the investment option.

Suppose the agent optimally explores one of the projects at the outset. Absent news,

the agent’s posterior probabilities and, therefore, her decision problem do not change.

In particular, in the optimal policy, the agent does not switch the project she explores

unless news arrives. The agent’s exploration choice is then effectively a static problem

corresponding to her decision of which project to start exploring at the outset.

In order to characterize the optimal policy, it is useful to consider a modification of

the probability that any project x = L,H is good, which we denote by p̃x ≥ px. When

project x is favorable, we define p̃x ≡ px. When project x is unfavorable, we define p̃x ≡
min(pyRy/Rx,1).10 When the agent is indifferent between exploiting either project myopi-

cally, so that both projects are favorable, the two definitions coincide.

Proposition 2 (Optimal Exploration in Balanced News Settings). Suppose λb
z = λ

g
z = λz for

z = L,H . Any optimal exploration strategy entails exploring project x until good news arrives,
where λx(1− p̃x) ≥ λy(1− p̃y), with y , x.

Intuitively, the agent selects the project that is most “informative.” A higher arrival

rate of news certainly increases the appeal of exploring a project. In addition, information

is useful only when it affects exploitation decisions. When the agent explores the favorable

project, only bad news triggers a switch in exploitation. Bad news on project x can arrive

only for a bad project x, which occurs with probability 1 − px. In contrast, exploration of

10In this case, pyRy ≥ pxRx, and thus p̃x ≥ px.
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an unfavorable project y may or may not lead to a change in exploitation choices, even if

good news arrives. Indeed, if the agent is sufficiently optimistic about project x, good news

on project y would not sway her exploitation choices. In such cases, exploring project y

before learning the quality of project x is of no value. Hence, the probability adjustment

factor in the proposition, which raises the hurdle for unfavorable projects.

The optimal exploration strategy is generally unique, with two exceptions. First, when-

ever the knife-edge condition that λx(1 − p̃x) = λy(1 − p̃y) for y , x holds, any exploration

strategy is optimal. Second, if project H is explored and good news arrives, the agent

exploits project H forever. Any ensuing exploration is then optimal.

In the classical environment, when exploration and exploitation are entangled, each

project is associated with a (Gittins) index that depends only on the parameters of that

project. Specifically, the index for a project z is given by pzRz
(r+λz)

(r+pzλz)
. The agent explores

and exploits the project with the higher index. When news is balanced, the agent switches

away from exploring and exploiting project z only upon receiving news.

In our environment, with exploration disentangled from exploitation, the expected

reward pxRx of each project x serves as a separable index for exploitation: the agent opti-

mally exploits whichever project generates the highest expected reward. The agent may,

however, switch her exploited project twice when exploration starts from an unfavorable

project L: first, if she learns her initially unfavorable project L is good and, second, if she

later learns her initially exploited project H is, in fact, good (as RH > RL). This already

highlights the importance of disentanglement, as exploration and exploitation need not

track one another. Furthermore, as Proposition 2 suggests, there is no obvious separa-

ble index that underlies optimal exploration, a point we return to in the next subsection.

Intuitively, the value of exploring the unfavorable project depends on the returns of the

favorable project.

Comparative statics are clearly affected by the ability to disentangle exploration from

exploitation. Under the canonical assumption that the two are entangled, a higher prior

probability that one project is good makes it more appealing for exploration and exploita-

tion. In contrast, as Proposition 2 indicates, in our setting, a higher prior that a project is

good may make its exploration less appealing. Additionally, optimal exploration depends

only on the “informational value” derived from each project. Consequently, unlike in the

classical environment, the optimal policy does not depend on the discount factor in ours.

5.2 No Exploration Index

As mentioned above, in the classical environment, Gittins (1979)’s characterization of the

optimal policy holds. That is, each project is associated with an index that only depends

on the parameters of that project. At any point, the agent explores and exploits the project
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with the highest current index. While Proposition 2 offers a simple characterization of the

optimal policy, we now show that, in our setting, optimal exploration is not governed by

an index à la Gittins (1979).

Suppose that the optimal policy in a balanced news setting can be described via an

index tailored to each project. We denote by I(p,R,λ) the index corresponding to a project

with a probability p of being good, an arbitrary reward R > 0 conditional on being good,

and a rate of news arrival—good or bad—of λ.

Consider three hypothetical projects. Project i = 1,2,3 is governed by a probability pi
that it is good, associated with a flow reward of Ri > 0, and a news arrival rate of λi > 0.

Suppose that

p2R2 > p1R1 and λ2(1− p2) < λ1

(
1−

p2R2

R1

)
.

Then, using Proposition 2, when the agent has access to projects 1 and 2 , she optimally

exploits project 2, but explores project 1. That is, I(p1,R1,λ1) > I(p2,R2,λ2).

Suppose now that

p2R2 > R3 > p3R3 > p1R1.

This implies that, when the agent has access to projects 2 and 3, she optimally explores

and exploits project 2. That is, I(p2,R2,λ2) > I(p3,R3,λ3).

Suppose, further, that λ3 is high enough so that

λ3(1− p3) > λ1

(
1−

p3R3

R1

)
.

This implies that, when the agent has access to projects 1 and 3, she explores and exploits

project 3. Therefore, I(p3,R3,λ3) > I(p1,R1,λ1), establishing a cycle, in contradiction. Al-

though this construction is done for the balanced news setting, it is robust to small per-

turbations of parameters. In particular, the optimal exploration policy is not generally

governed by an index for either good or bad news settings either. Thus,

Corollary 2 (No Exploration Index). The optimal exploration policy is not governed by an
index.

We stress that this conclusion is not driven by an excess number of degrees of freedom.

The classical environment entails the same project characteristics and, therefore, the same

degrees of freedom.
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5.3 Good News Settings

We now analyze good news settings. Before describing our general characterization, con-

sider the following example, highlighting the impacts of disentanglement when both projects

are risky.

Example 1 (Good News: Ex-ante Identical Projects) Suppose the two projects are ex-ante

identical: pL = pH and RL = RH .11 Furthermore, for simplicity, consider the pure

good news setting in which λb
z = 0 and λ

g
z = λ > 0 for z = L,H .

In the classical environment with α = 1, the optimal strategy requires splitting ex-

ploration and exploitation equally between the two projects until receiving news.

Intuitively, consider a discrete time approximation of this problem. If the agent ex-

plores and exploits project x, the corresponding Gittins index declines absent news—

the agent becomes more pessimistic about project x. She should then immediately

switch to project y. In the limit, splitting exploration and exploitation equally across

the two projects leads the two indices to decline at the same rate and maintains the

incentive to continue with such a split. We can interpret this strategy as requiring

the agent to switch between projects infinitely often.12

In contrast, in our setting with α = 0, an optimal policy requires indefinite disen-

tanglement, i.e, exploiting one project and exploring the other indefinitely, until the

arrival of good news. If the agent exploits project x and explores project y at the out-

set for any infinitesimal time interval, project x becomes favorable, so continuing to

exploit project x is optimal. Furthermore, information is useful to the agent only if it

leads her to change her exploited project. Good news on project x would not alter her

exploitation choices; only good news on the unfavorable project would. This means

that it is optimal for the agent to use her entire exploration budget on project y: any

splitting of exploration resources between the two projects is sub-optimal since it re-

duces the effective rate at which good news arrives on the unfavorable project. As a

consequence, with full disentanglement, the agent switches her exploitation choices

at most once and never switches her exploration choice prior to receiving news. Of

course, the agent is indifferent as to which project she explores and which she ex-

ploits at the outset given the complete symmetry of the problem. In fact, the agent

can also choose at random which project to start exploring. The contrast with the

classical environment is that such randomization cannot proceed with a split of ex-

ploration or exploitation for a non-trivial duration.

11Strictly speaking, this violates our assumption that RH > RL, which generates the non-trivial scenarios for
Section 4. We assume equal rewards here to simplify our illustration of the stark effects of disentanglement.

12See case (v) in Section 3.3.2 of Gittins et al. (2011) for details.
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In general, in the classic environment, when projects are heterogeneous, the agent ini-

tially explores and exploits the project with the higher Gittins index. Absent news, that

project’s Gittins index declines over time, until it reaches equality with the index of the

other project. Upon such indifference, the agent splits exploration and exploitation to

maintain her indifference. We can interpret this splitting of attention, or exploration re-

sources, as the limit of sequential immediate switches in discrete time (see Gittins et al.,

2011). As we now show, such rapid switches never occur when exploration and exploita-

tion are disentangled.

Consider then a disentangled setting with good (or balanced) news, where λ
g
x ≥ λb

x

for x = L,H . Whenever project x is favorable, so that pxRx ≥ pyRy , exploiting project x

is optimal. When the agent explores project x, receiving no news makes her increasingly

pessimistic. We denote by t̄x(pL,pH ) the time it takes the agent to reach indifference be-

tween the expected values of both projects. If pxRx = pyRy , then t̄x(pL,pH ) = 0; otherwise,

t̄x(pL,pH ) > 0.13 Specifically, after exploring project x for a duration t̄x(pL,pH ) without

receiving news, the agent’s posterior that project x is good is precisely pyRy/Rx. That is,

pxe
−λg

x t̄x(pL,pH )

pxe−λ
g
x t̄x(pL,pH ) + (1− px)e−λ

b
x t̄x(pL,pH )

= pyRy/Rx.

Simplifying, whenever λg
z > λb

z , we obtain:

t̄x(pL,pH ) =
1

λ
g
x −λb

x
ln

(
px(Rx − pyRy)

pyRy(1− px)

)
.

We now state our result characterizing optimal exploration in this setting.14

Proposition 3 (Optimal Exploration in Good News Settings). Suppose λg
z > λb

z for z = L,H

and that project x is favorable, so that pxRx ≥ pyRy . An optimal exploration strategy is described
as follows.

• If, at any time the agent explores project y, she never switches absent news.

• If the agent initially explores project x, then if, absent news, she switches to exploring
project y, she does so at a time T ≤ t̄x(pL,pH ).

13If pxRx > pyRy in a balanced news setting, exploring project x does not change the agent’s posterior and

we set t̄x(pL,pH ) =∞. When pxRx ≤ pyRy , we denote t̄x(pL,pH ) = 0 even when λ
g
x = λbx and the agent does not

alter her prior as time passes without information.
14As stated at the outset, we ignore 0-measure sets. When we say the agent explores project y at some time,

we mean the agent explores project y for a positive-measure set of times. Switching to a project x implies that
there is an ensuing positive-measure set of times at which the agent explores project x.
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Figure 2: Optimal policy with two risky projects in good news settings

Furthermore, if λb
x = 0, there is an optimal strategy in which the agent never switches her ex-

plored project absent news.

Proposition 3 illustrates that disentanglement dramatically reduces the expected num-

ber of switches prescribed by the optimal policy. The exploited project can be switched at

most twice: starting from project H , good news about project L could lead to one switch

if the agent is sufficiently pessimistic about project H , and later good news about project

H could lead to a switch back to project H . The explored project can be switched at most

once before any news arrives. In fact, if the agent explores the unfavorable project ini-

tially, she never switches the explored project absent news, no matter how pessimistic she

becomes about this project. Of course, when she becomes pessimistic about the explored

project, she also becomes increasingly confident that she is exploiting the superior project.

The role of disentanglement is evident in the optimal policy described in Proposition

3. Under this policy, eventually, absent news, the exploited project must differ from the

explored project. Indeed, since the optimal policy prescribes indefinite exploration of a

project, eventually the posterior probability that the explored project is good must be low

enough to make the other project favorable and, therefore, exploited.

Figure 2 depicts the exploration and exploitation patterns in good news settings. In

the figure, project H is initially favored and both explored and exploited. As time pro-

gresses without news, the agent’s confidence in project H diminishes. However, at time T ,

the agent switches to exploring project L even though project H remains the more favor-
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able option. In the absence of news, the agent continues to exploit project H indefinitely.

Starting from time T , the projects she explores and exploits diverge.

In order to understand the logic of Proposition 3, consider first the case in which the

optimal exploration strategy prescribes exploring the unfavorable project y initially, so

that the agent explores and exploits different projects. The value of exploring project y

depends only on the rate at which good news arrives: receiving bad news on project y

retains project x as favorable. Thus, similar to the setting with one safe project, the value

of exploring project y depends on λ
g
y , but not on λb

y . In particular, this value is the same if

we increase the arrival rate of bad news so that news is balanced, λb
y = λ

g
y . In this case, as

discussed in Section 5.1, the agent’s posteriors do not change absent news. If it is optimal

to explore project y at some point, it is also optimal to explore project y after any amount

of time that has passed without news. We can conclude that it must also be optimal to

continue exploring project y in the absence of news when λb
y < λ

g
y .

Consider now the case in which the optimal strategy prescribes exploring the favorable

project x initially, so that the agent explores and exploits the same project at first. Why

can it be optimal for the agent to switch the project she explores when λb
x > 0? Suppose,

for instance, that pHRH > RL ≥ pLRL. In this scenario, exploring project L initially is not

useful: even good news on project L would not lead the agent to switch her exploited

project. Instead, if λb
H > 0 and the agent explores project H , she would switch to exploiting

project L upon receiving bad news on project H : exploring project H is valuable. When,

instead, pLRL < pHRH < RL, good news on project L would lead the agent to switch to

exploiting project L, implying that exploring project L can be useful. The determination of

the switching time T depends on the relative magnitudes of pHRH , pLRL, and the arrival

rates of news on the two projects.

Why can the agent not switch exploration of the favorable project x after a duration

T > t̄x(pL,pH ) without receiving news? By the definition of t̄x(pL,pH ), after such a duration

T without news, project x becomes unfavorable. Our previous arguments then imply that,

absent news, indefinite exploration of project x beyond time T is optimal.

As is common in individual decision problems, multiplicity of optimal policies is rare,

as the following claim illustrates.

Claim 1 (Uniqueness of Optimal Policy). Suppose that λg
z > λb

z for z = L,H and that the
favorable project x is such that Ry > pxRx > pyRy . Then, generically, the optimal policy is
unique.15

15The optimal policy is unique as long as λbxRy , λ
g
yRx, which excludes a zero-measure set of parameters.
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The claim captures settings in which good news on the unfavorable project is imme-

diately valuable: it alters the exploited project. Multiplicity can arise when information

has no instantaneous value, regardless of which project is explored. This is the case when

pHRH > RL in a pure good news setting, with λb
z = 0 for z = L,H . In this parameter re-

gion, the agent exploits project H initially even after good news on project L. Therefore,

exploration has no instantaneous value. Of course, good news on project L leads the agent

to explore project H , and a sufficiently long time without news would lead the agent to

switch to exploiting project L. In this case, there are multiple optimal strategies that differ

in which project is explored initially.

We now turn to a discussion of the initial exploration choice. For expositional sim-

plicity, we focus on the special case of pure good news settings, where λb
x = 0, x = L,H .

In this case, Proposition 3 indicates that an optimal policy has the agent explore the same

project until receiving news, implying that the initial choice is permanent absent news. We

also restrict attention to the case pLRL < pHRH < RL, where information on both projects

is valuable at the outset. Indeed, exploring project H for a sufficiently long time would

make the agent pessimistic about the quality of that project and, absent news, the agent

would switch her exploited project after a duration t̄H (pL,pH ). Exploring project L is also

valuable: receiving good news on that project would lead the agent to immediately switch

the project she exploits. In particular, for this set of parameters, exploring either project

can be optimal depending on the difference between news’ arrival rates.

In line with our previous notation, we denote p̃L ≡ pHRH /RL. Thus, p̃L corresponds to

the prior that project L is good at which the agent is indifferent between the two projects.

Claim 2 (Initial Choice with Pure Good News). Suppose λb
z = 0 for z = L,H and that pLRL <

pHRH < RL. It is optimal to explore project H if and only if λg
H

w−ρL
1−ρL (1−pH ) ≥ λ

g
L(1− p̃L), where

w = e−rt̄H (pL,pH ) and ρL = λ
g
L/

(
r +λ

g
L

)
.

The specification in the claim is reminiscent of the one appearing in Proposition 2, with

the added multiplier w−ρL
1−ρL for project H . As already noted, Proposition 3 indicates that in

the pure good news setting, we only need to compare two cases, differing in which project

is explored until news. Suppose that exploring project H is optimal. At time t̄H (pL,pH ),

project L becomes favorable and the agent explores and exploits different projects. As

described in the intuition for Proposition 3, the value of exploring project H depends

only on the arrival rate of good news: receiving bad news on project H sustains project

L as favorable. Thus, the value of exploring project H depends on λ
g
H , but not on λb

H .

Consequently, starting at t̄H (pL,pH ), the expected payoffs from this problem are the same
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as those in an auxiliary balanced news problem with arrival rate of λg
H for both good and

bad news. The determination of which project to explore must then conform with the

characterization in Proposition 2.

In contrast with the balanced news setting, when pHRH > pLRL, the initial compari-

son includes the factor w−ρL
1−ρL , penalizing the exploration of project H . To understand this

penalty, note that, absent news, if the agent explores project H , she switches the exploited

project only after a duration t̄H (pL,pH ). The larger this duration, the longer the period

in which exploration without news does not affect the agent’s exploitation, and the less

appealing it is to explore project H . Indeed, w and w−ρL
1−ρL decrease with t̄H (pL,pH ). If both

projects are favorable, so that t̄H (pL,pH ) = 0, or if the agent is infinitely patient (r = 0), then

w = 1 and the claim’s inequality boils down to the comparison in Proposition 2. Similar

characterizations hold for other cases of prior probabilities that either project is good.

This claim offers another way to show the way by which disentaglement of exploration

from exploitation has bite. Although project H is optimally exploited at the outset, it

is optimal to explore project L whenever ρL > w, i.e., when news arrival on project L is

fairly rapid. Similarly, as the agent becomes more and more impatient, with r increasing

indefinitely, both w and ρL approach 0, and the agent explores project L. Since pLRL <

pHRH < RL, in these circumstances, the agent would exploit project H initially regardless

of which project she explores. She switches the project she exploits only if she learns that

project L is good. Furthermore, unlike the comparative statics in the classical entangled

environment, exploration of project L becomes more appealing as pH increases.

In general, comparing the payoffs generated by the optimal policy in our setting to

those generated in the classical environment yields similar insights to those observed when

one of the projects is safe, as presented in Corollary 1. When arrival rates λ
g
L and λ

g
H are

very high or when the discount rates are very low, the agent can achieve payoffs close

to those corresponding to a complete information setting in both environments. Simi-

larly, when arrival rates λg
L and λ

g
H are very low, or discount rates are very high, the agent

receives an expected payoff approximating the myopic expected payoff in both environ-

ments. In particular, the benefits of disentanglement are most pronounced for interme-

diate levels of arrival and discount rates. Similarly, the benefits of disentanglement are

non-monotonic in the prior pH .

5.4 Bad News Settings

We now turn to bad news settings. Before characterizing the optimal policy, consider the

following example, which complements Example 1 and illustrates some of the qualitative

differences between the information structures we consider.
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Example 2 (Bad News: Project L is Favorable) Suppose that λg
z = 0 and that λb

z = λz > 0

for z = L,H . Furthermore, suppose project L is favorable, so that pLRL > pHRH .

In the classical bandit environment, if the wedge between the projects’ expected val-

ues is sufficiently high, the agent explores and exploits project L. Absent news, the

agent becomes increasingly optimistic about project L and thus continues exploring

and exploiting project L indefinitely. If project L is indeed good, then the agent never

receives bad news on project L and therefore never learns whether project H is good.

In contrast, with full disentanglement, even if the agent explores project L at the out-

set, which is optimal if λL is high enough, she does not do so indefinitely. Switching

the exploited project can occur both upon learning that project L is bad, and when

becoming increasingly optimistic about project H . As the duration of exploration of

project L increases, so does the posterior pL, implying that the likelihood of learning

that project L is bad vanishes, as does the value of exploring it. Consequently, switch-

ing to exploring project H is eventually optimal. Thus, disentanglement is not only

useful but, in bad news settings, may lead to more switching of the explored projects

than in the classical environment.

The observation in Example 2 that, in the classical environment, the agent explores and

exploits the same project indefinitely unless news arrives is clearly quite general. At the

outset, if the Gittins index is higher for project x, that project is explored and exploited.

Absent bad news, the agent becomes more optimistic about the quality of project x and its

associated Gittins index increases. In contrast, in our environment, when exploration and

exploitation are disentangled, the agent may optimally switch the projects she explores.

Proposition 4 (Optimal Exploration in Bad News Settings). Suppose λb
z > λ

g
z for z = L,H .

The optimal exploration strategy is described as follows.

• If the agent initially explores project H , she never switches absent news.

• If the agent initially explores project L, she switches after a period T <∞ without news.

In contrast with the optimal policy in good news settings, characterized in Proposition

3, in bad news settings, the optimal policy never entails exploring project L forever. The

intuition is similar to that appearing in Example 2. When the agent explores project L, ab-

sent news, she becomes increasingly optimistic about its prospect. Consequently, regard-

less of news’ arrival rates, after a sufficiently long period of exploring project L without

news, the agent exploits project L and the likelihood she learns project L is bad becomes

vanishingly small. The value of exploring project H , however, remains strictly positive.
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Figure 3: Optimal policy with two risky projects in bad news settings

Proposition 4 also highlights the fact that in bad news settings—unlike in good news

settings—disentanglement only plays a role in the relative short run. After enough time

passes without news, the agent necessarily explores and exploits project H .

Figure 3 depicts the exploration and exploitation patterns in bad news settings. In the

figure, project H is initially favored and therefore exploited, but project L is explored, say,

because it features high news arrival rate. As time progresses without news, the agent’s

confidence in project L increases. At time t1, project L becomes favored, and the agent

switches to exploiting it. By time T , the rate of learning on project L has flattened, and

the agent switches to exploring project H , while continuing to exploit project L. Without

news, the agent becomes increasingly optimistic about project H . At time t2, project H

becomes favorable again and the agent switches to exploiting it. Absent news, the agent

continues to exploit and explore project H indefinitely.

In general, the proof that the optimal policy entails no switching when project H is

explored initially is involved. When pHRH ≥ RL, the claim follows immediately. In this

case, the agent must explore project H from the start since even good news about project

L would not lead her to change the project she exploits; exploring project L is not decision

relevant.

When RL > pHRH ≥ pLRL, it is useful to consider an auxiliary problem in which the

agent receives balanced news about project H at the original rate λb
H for both good and

bad news; the original arrival rates are used when project L is explored. In the auxiliary

problem, the agent has more information than in the original problem. If, in the original
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problem, exploring project H is optimal, then it is also optimal to explore project H in the

auxiliary problem, where it is more informative. Absent news, the agent would optimally

explore project H until news in the auxiliary problem: her posteriors do not change. The

agent can emulate that same strategy even in the original problem. Furthermore, exploring

and exploiting project H until news generates the same payoffs in both problems. Since

it is optimal in the auxiliary problem, which affords the agent more information, it must

be optimal in the original problem as well. The remaining case in which pLRL > pHRH

is discussed in the Appendix. The proof of Proposition 4 also illustrates that the optimal

policy is unique until news arrives.16

As for the initial choice of projects, our discussion above suggests that whenever pHRH ≥
RL, the agent begins by exploring project H . When RL > pHRH , project L is explored ini-

tially when bad news’ arrival rate for project L is sufficiently high. The proof of Proposition

4 provides the relevant parameter comparisons governing the choice of which project is

optimally explored first.

In terms of comparative statics, in bad news settings—unlike good news settings—as

r grows indefinitely, the agent optimally explores and exploits the same project: the only

news that would change short-term exploitation is bad news on the exploited project. The

comparison of payoffs generated by the optimal policy with and without disentanglement

is similar to that observed for good news settings and that described with one safe project

in Corollary 1. In particular, the benefits of disentanglement are most pronounced for

intermediate values of parameters.

6 Concluding Remarks

This paper presents a new framework for studying experimentation that, unlike the con-

ventional multi-arm bandit paradigm, permits agents to disentangle exploration from ex-

ploitation. Our findings are applicable to the extensively studied case of Poisson ban-

dits, accommodating multiple risky projects and general good and bad news settings. We

demonstrate that the optimal policy entails full learning asymptotically, displays signif-

icant persistence, yet cannot be discerned through an index like Gittins’. The ability to

disentangle proves especially beneficial for intermediate parameter values.

Absent news, disentanglement is utilized at different phases of the experimentation

process, depending on the format of news. In good news settings, the agent optimally

explores and exploits different projects after enough time has passed. In bad news settings,

16If any news arrives about project H , or if bad news arrives about project L, later exploration has no effect
on payoffs. In particular, after such news arrives, any exploration strategy is optimal.
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the agent may explore and exploit different projects only in the short run. After a long

duration, she necessarily explores and exploits the same project.

We hope our framework can be used for a variety of applications that have been in-

vestigated only through the lens of the classical bandit environment, including team ex-

perimentation (as in Keller et al., 2005; Keller and Rady, 2010; Strulovici, 2010), expert

delegation (as in Guo, 2016), job search (as in Jovanovic, 1979; Miller, 1984), and more.

7 Appendix

7.1 Preliminaries

Proof of Proposition 0. Let Ut be the continuation payoff according to the optimal policy

at time t, and let V denote the full-information payoff, when the realized quality of each

project is known.

Denote by Mt be the myopic payoff—the value of the favorable project—given the in-

formation the agent has at time t under the optimal policy. Let mt = EMt. The value mt is

increasing in t since the agent’s information improves over time. Also, mt ≤ EV . Therefore,

the limit m∞ = limt→∞mt exists.

Let ε > 0 and T be sufficiently large so that, by exploring both projects at the same rate

for a period of time T , the agent can achieve a continuation payoff of EV − ε.

The following inequalities must hold for all t:

(1− e−rT /(1−α))mt + e−rT /(1−α)(EV − ε) ≤ EUt ≤ r

∫ ∞
τ=0

e−rτmt+τ ≤m∞.

The left inequality follows from the fact that the agent can use the optimal exploration

policy and exploit the favorable project for a period of time T /(1 − α) and use her explo-

ration resources over that duration to achieve continuation payoff of at least EV − ε from

time t + T /(1−α) onwards. The right-most inequality follows from the fact that, with any

strategy, the conditional expectation of the flow payoff at time t + τ is smaller than the

conditional expectation of the myopic payoff at that time: the most the agent can get at

any time t + τ is mt+τ .

By taking the limit t→∞ we obtain that m∞ ≥ EV −ε. Since this is true for every ε and

since mt ≤ EV for all t, we get that m∞ = EV . It follows that limt→∞EUt = EV . Finally,

since Ut is also a sub-martingale, Ut must converge to V almost surely, as desired.

For much of our analysis, it will be useful to note that when an agent discounts at a

rate r and receives news arriving at a rate λ, the expected discount at the time t̃λ at which
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news first arrives is given by:

E(e−rt̃λ) =
∫ ∞

0
λe−λte−rtdt =

λ
r +λ

. (2)

7.2 One Safe Project: Proofs and Additional Analysis

Proof of Proposition 1. Consider decision problem ΓB with balanced news arriving at a rate

of λ = λ
g
H = λb

H . Absent news, the posterior that the risky project is good remains con-

stant. Thus, the time elapsed exploring a project does not affect which project should be

exploited, implying that the optimal strategy is constant as long as no news arrives. If the

agent explores and exploits project H until news, the resulting expected payoff is:

pRH + (1− p)
λ

r +λ
RL.

The first term corresponds to a realized good project H , where, regardless of news, the

agent gets rewards. The second term corresponds to a realized bad project H . The agent

switches to project L only when bad news about project H arrives, with an expected dis-

count of λ
r+λ . Analogous logic implies that the payoff of exploiting project L while explor-

ing project H at a rate of 1−α is:

RL + p
λ(1−α)

r +λ(1−α)
(RH −RL).

In particular, since the difference in payoffs between exploiting project H and project L is

monotonic in p, there is a cutoff p̄ (α) such that if p > p̄ (α), the DM explores and exploits

project H until news, while if p < p̄ (α), the DM explores and exploits project L indefinitely.

At the cutoff p̄ (α), the DM is indifferent. Equating the two expected payoff expressions

yields the value of p̄ (α) in the statement of the proposition.

We now move to a good-news setting ΓG, where λg
H > λb

H , so that λ = max{λg
H ,λ

b
H } = λ

g
H .

We claim that a strategy of the following form must be optimal: there is a T (or a p̂) such

that, absent news, the agent exploits project H for t < T (or p > p̂) and exploits project L for

t ≥ T (p ≤ p̂), where T is such that exploration of project H for a duration of T leads p to

decline to p̂. Consider an auxiliary problem ΓA with the following modified news process:

if the agent exploits project L and explores project H at a rate of 1 − α, she receives both

good and bad news on project H at a rate of λg
H ; If the agent exploits project H , she receives

news as prescribed in problem ΓG. The candidate strategy delivers the same payoffs in ΓA

and in ΓG: (i) when exploiting project H , news arrives at the same rate in both problems;

(ii) when exploiting project L, the additional arrival rate of bad news is not advantageous

since only good news on project H would lead the agent to switch projects. Furthermore,

payoffs in ΓA must be weakly higher than in ΓG. Thus, if the candidate strategy is optimal
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in ΓA, it must be optimal in ΓG. We now show that such a strategy is optimal in ΓA. In

this problem, absent news, beliefs do not change when exploiting project L. Therefore, if

at any point it is optimal to exploit project L at time t in ΓA, then absent news, it is also

optimal to do so at later times.

We want to show that p̂ = p̄ (α). The value of exploiting project L is the same in ΓG

and in ΓB, with with news arrival rate of λ = λ
g
H , whereas the value of exploiting project

H is lower in ΓG. Therefore, p̂ ≥ p̄ (α). To show that p̂ ≤ p̄ (α), notice that exploiting

project L until news is optimal if any alternative strategy delivers weakly lower payoffs.

Consider the alternative strategy that prescribes exploiting project H for a time interval ∆

before returning to exploiting project L in the event that there is no news. This alternative

strategy is superior if

−∆r (RL − pRH ) + (1−∆r)pλg
H∆α

r

r + (1−α)λg
H

(RH −RL) ≤ 0.

Taking limits as ∆→ 0 and simplifying we obtain that this requires that p ≤ p̄ (α).

We now obtain expressions for the agent’s payoffs, which underlie some of the results

described in Section 4.2. We focus on the case of full disentanglement, α = 0, where the

cutoff posterior is p̄(0) = RL
RH

, which is relevant for our analysis there. Denote by Ω(p) = 1−p
p

the odds ratio when the agent believes project H is good with probability p.

Proposition A (Expected Payoffs with Full Disentanglement) Consider pure news settings
with λ = max{λg

H ,λ
b
H } and 0 = min{λg

H ,λ
b
H } . For full disentanglement, α = 0, and pos-

terior p that project H is good,

1. Good news (λ = λ
g
H ):

(a) If p ≤ p̄(0), expected payoffs are RL + p λ
r+λ (RH −RL);

(b) If p ≥ p̄(0), expected payoffs are pRH + (1− p)
[

Ω(p)
Ω(p̄(0))

]r/λ λ
r+λRL.

2. Bad news (λ = λb
H ):

(a) If p ≤ p̄(0), expected payoffs are RL + p
[
Ω(p̄(0))
Ω(p)

]r/λ λ
r+λ (RH −RL);

(b) If p ≥ p̄(0), expected payoffs are pRH + (1− p) λ
r+λRL.

Proof of Proposition A. The terms corresponding to parts 1.a and 2.b have already been

calculated in the proof of Proposition 1. We now turn to parts 1.b and 2.a.

Consider good news settings and suppose p ≥ p̄(0) = RL
RH

. Set β to satisfy p = βp̄(1)+(1−
β), so that β is the probability such that, if the agent explores a good project H—generating

either good news and a posterior of 1, or no news—she will reach the posterior p̄(0). Let z

28



be such that β = pz + (1− p), so that z is the conditional probability that the agent reaches

the posterior p̄(0), conditional on project H being good. Simple algebra than yields that

z = Ω(p)
Ω(p̄(0)) . Let t̄ denote the exploration duration of project H after which, absent news,

the agent reaches precisely the posterior p̄(1). Since good news arrives at an exponential

rate of λ, we can write z = e−λt̄. Thus, the discount factor at time t̄ can be written as zr/λ.

Consider an auxiliary problem ΓA in which, after reaching the posterior p̄(0), the agent

receives balanced news, with arrival rate of λ = λ
g
H , about project H no matter which

project she exploits. The optimal strategy in our setting is optimal in ΓA and, additionally,

generates the same expected payoffs in both problems. Furthermore, in ΓA, absent news,

the agent is indifferent between exploiting project L or project H when reaching p̄(0) = RL
RH

.

Thus, the payoffs from utilizing the optimal strategy in our setting coincide with those

derived from the exploitation of project H until news in ΓA.

In either our problem or ΓA, if the agent exploits project H indefinitely, regardless of

whether news arrives, she receives the expected value of project H , namely pRH . Until the

posterior p̄(0) is reached, the agent exploits project H and can only learn good news about

it. She therefore never switches her exploited project. The benefit of responding to news

starting from p̄(0) is that when project H is bad, which occurs with probability (1 − p),

the arrival of news—at a time with expected discount of λ
r+λ (see equation 2)—the agent

switches to project L and receives RL. Thus, the agent’s expected payoff is:

pRH + (1− p)zr/λ
λ

r +λ
RL,

corresponding to the statement in part 1.b of the proposition.

Consider bad news settings and suppose p ≤ p̄(0) = RL
RH

. Similar arguments to those

used for good news settings imply that if we define z̃ = Ω(p̄(0))
Ω(p) , then zr/λ captures the

discount factor at the time t̄ it takes to reach p̄(0) when exploring project H without news.

Consider an auxiliary problem ΓA as before, whereby after reaching p̄(0), the agent

received balanced news, with arrival rate of λ = λ
g
H . The optimal strategy in our setting

is optimal in ΓA and, additionally, generates the same expected payoffs in both problems.

Until the posterior p̄(0) is reached, the agent exploits project L and can only learn bad

news about project H . She therefore never switches her exploited project. The benefit of

responding to news starting from p̄(0) is that when project H is good, which occurs with

probability p, when news arrives, associated with an expected discount of λ
r+λ , the agent

switches to project L and receives RH . Thus, the agent’s expected payoff is:

RL + pzr/λH
λ

r +λ
(RH −RL),

which corresponds to the expression stated in part 2.a of the proposition.
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In Section 4.2, we evaluated the expected payoff benefit of disentangling exploration

from exploitation. The description of payoffs when there is full entanglement, α = 1,

follows from KRC’s and KR’s analysis. Recalling that p̄(1) = rRL
RH (r+λH )−RLλH

and using the

same notation as above, we have:

Proposition B (Expected Payoffs with Full Entanglement) Consider pure news settings with
λ = max{λg

H ,λ
b
H } and 0 = min{λg

H ,λ
b
H } . For full entanglement, α = 1, and posterior p

that project H is good,

1. Good news (λ = λ
g
H ):

(a) If p ≤ p̄(1), expected payoffs are RL ;

(b) If p ≥ p̄(1), expected payoffs are pRH + 1−p
1−p̄(1)

[
Ω(p)

Ω(p̄(1))

]r/λ
(RL − p̄(1)RH ).

2. Bad news (λ = λb
H ):

(a) If p ≤ p̄(1), expected payoffs are RL ;

(b) If p ≥ p̄(1), expected payoffs are pRH + (1− p) λ
r+λRL.

7.3 Two Risky Projects: Proofs

Proof of Proposition 2. Denote by ρz = λz/(r +λz) for z = L,H the expected discount at the

time at which news arrives on project z. Let e0 = max {pLRL,pHRH } be the expected payoff
absent any information. Let ez be the expected payoff generated when the agent knows

whether project z is good, but has no access to information on the other project. Finally,

let e∗ denote the expected payoff the agent receives when she has complete information on

the quality of both projects.

If the agent explores project x until news, and then switches to exploring project y , x,

her expected payoff is

(1− ρx)e0 + ρx(1− ρy)ex + ρxρye
∗.

In particular, exploring project x first is optimal whenever

(1− ρx)e0 + ρx(1− ρy)ex ≥ (1− ρy)e0 + ρy(1− ρx)e2.

Equivalently,

ρx(1− ρy)(ex − e0) ≥ ρy(1− ρx)(ey − e0),

or

ρx
1− ρx

(ex − e0) ≥
ρy

1− ρy
(ey − e0),
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which translates to

λx(ex − e0) ≥ λy(ey − e0). (3)

If project x is favorable, then e0 = pxRx, and ex = pxRx + (1− px)pyRy . Therefore, ex −
e0 = (1− px)pyRy . If project x is unfavorable, then e0 = pyRy and ex = px max

(
Rx,pyRy

)
+

(1− px)pyRy , so ex − e0 = px max
(
Rx,pyRy

)
− pxpyRy = px(Rx − pyRy)+ = pxRx(1− p̃x), where

p̃x = min(pyRy/Rx,1). By substituting into equation (3), we conclude that projects are

compared via λx(1−p̃x), where p̃x = px when project x is favorable and p̃x = min(pyRy/Rx,1)

when project x is unfavorable, as stated in the proposition.

Proof of Proposition 3. Suppose project x is favorable, so that pxRx ≥ pyRy . We need to show

that it is optimal for the agent to either explore project x for a period T absent news, with

0 ≤ T ≤ t̄x(pL,pH ), after which project y is explored until news is received; or to explore

project x until news arrives, denoted as exploring x for a duration T =∞. Whenever the

agent receives news on one project, but not the other, she reverts to exploring the uncertain

project. Once the agent learns the realization of both projects, the exploration strategy has

no payoff impacts. For simplicity, we assume the agent reverts to exploring project x in

that case. We denote by σT the strategy induced by each such T ∈ [0, t̄H (pL,pH )]∪ {∞}.
Given the original decision problem Γ , consider an auxiliary problem ΓA with the fol-

lowing modified news process:

1. If the agent explores project y, she receives both good and bad news at a rate of λg
y .

2. If the agent explores project x and by that moment she has already explored project

x for a period of at least t̄x(pL,pH ), she receives both good and bad news at a rate of

λ
g
x.

3. If the agent explores project x and by that moment she has explored project x for a

period smaller than t̄x(pL,pH ), she receives good news at a rate of λg
x and bad news

at a rate of λb
x.

Under any exploration strategy, and at any point in time, the agent is at least as well

informed in ΓA as in Γ . In particular, the optimal expected payoff that can be achieved in

ΓA is weakly higher than the optimal expected payoff that can achieved in Γ .

Claim A1 For any T ∈ [0, t̄x(pL,pH )]∪ {∞}, the strategy σT generates the same expected payoff
in ΓA as it does in Γ .

Proof of Claim A.1 For T ≤ t̄x(pL,pH ), the agent receives information at the same arrival

rate in both Γ and ΓA during the initial duration of T . If news arrives during that period, the
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resulting optimal exploitation is identical in both problems: if good news arrives, exploit

project x indefinitely if x = H or until good news arrives from project y if x = L, and if

bad news arrives from project x, then exploit project y indefinitely. Absent news, project

x remains favorable when the agent switches to exploring project y. Thus, from then on,

only good news on project y alters her exploitation. Since the arrival rate of good new on

project y is the same in Γ and ΓA, the resulting expected payoffs coincide as well.

Suppose now that T = ∞, so that the agent explores project x until receiving news.

Until time t̄x(pL,pH ), news arrives at the same rate in both Γ and ΓA. Absent news, at time

t̄x(pL,pH ), the agent is indifferent between the two projects: they are both favorable. At

any t > t̄x(pL,pH ), absent news, it is optimal to exploit project y in both Γ and ΓA. Only

good news on project x then alters exploitation, and good news arrives at the same rate in

Γ and ΓA. Therefore, the resulting expected payoffs coincide.

Claim A.2 There exists T ∈ [0, t̄x(pL,pH )]∪ {∞} such that σT is optimal in ΓA.

Proof of Claim A.2 In ΓA, if the agent explores project y and sees no news, her belief about

the quality of project y does not change. Therefore, by dynamic-programming principles,

if it is optimal for the agent to explore project y at any point then, absent news, it is also

optimal to explore project y at any later point. Similarly, if the agent has explored project

x for a period of at least t̄x(pL,pH ), continuing to explore project x until news is optimal.

The conclusion follows.

Claims A.1 and A.2 illustrate the optimality of the class of strategies specified in the

proposition. We now turn to showing that in settings with pure good news on at least one

project, exploration switches only upon receiving news.

Claim A.3 If λb
x = 0, there exists an optimal strategy in Γ with T = 0 or T =∞.

Proof of Claim A.3 Suppose Alex explores project y from the start, i.e., Alex uses the strat-

egy σ0. Bailey, facing the same decision problem, uses σT with 0 < T ≤ t̄x(pL,pH ). We claim

that Alex has a higher expected payoff than Bailey.

Consider Alexis and Baylor, who face a coupled problem. Baylor, like Bailey, explores

project x for a period of T or until receiving news. Denote by ω the random time when

Baylor either receives news on project x or a period of T has transpired (so that ω is the

minimum between T and the arrival time of news on project x, which is distributed expo-

nentially with arrival rates of λb
x = 0 and λ

g
x ). Like Bailey, after time ω, Baylor switches

to exploring project y. Unlike Bailey, at any time t ≥ ω, Baylor receives the news Alexis

has received at time t −ω on project y. Alexis, like Alex, explores project y until news.

Let τ be the random variable that represents the first arrival of news on project y for Alex

(distributed exponentially with parameters λb
y and λ

g
y). At any time t ∈ [τ,τ + ω], Alexis
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receives the news Baylor has received on project x at time t−τ , after which Alexis receives

news independently on project x. Thus, Alexis’ and Baylor’s information is coupled. Since

Alex and Bailey’s news arrivals are independent and identical, Alexis receives the same

expected payoff as Alex and Baylor receives the same expected payoffs as Bailey. We now

show that Alexis receives a weakly higher expected payoff than Baylor.

Conditional on τ , at any moment t such that 0 ≤ t ≤ω+τ , Baylor does not learn whether

project y is good or bad. Since λb
x = 0, Baylor can only receive good news or no news about

project x until such time t. Since T ≤ t̄x(pL,pH ), in either case, Baylor continues exploiting

project x. Alexis, however, exploits project x until time τ , when a switch to project y may

be optimal when news about project y is good. Therefore, conditional on ω and τ , up

to time min{ω,τ}, Alexis’ and Baylor’s expected payoffs coincide, whereas over the period

between min{ω,τ} and ω+τ , Alexis’ expected payoff is weakly higher than Baylor’s. At any

moment t such that t > ω+τ , both Alexis and Baylor know whether project y is good or bad

and have explored project x for a period t − τ , receiving the same information ex-ante.17

Therefore, at moments t such that t > ω + τ , Alexis’ and Baylor’s expected payoffs are the

same. Therefore, Alexis’ expected payoff is weakly higher then Baylor’s, as required.

Proof of Claim 1. We show that the unique optimal strategy is the strategy described in

Proposition 3 and that the optimal switching point of exploration is generically unique. It

suffices to prove this for an auxiliary problem as in the proof of Proposition 3, in which

balanced news from the unfavorable arm y arrives at rate λ
g
y .

Fix all parameters except px. Consider the difference in the agent’s expected payoffs

between a strategy that explores project x for a small duration ∆ > 0 and then switches to

exploring project y forever and a strategy that explores project y forever. This difference

is given by

∆ ∗
(1− px)λb

x ∗
r

r +λ
g
y
pyRy − rpy

λ
g
y

r +λ
g
y

(Ry − pxRx)

+ o(∆) =

∆ ∗ r

r +λ
g
y
pyRyD(px) + o(∆), (4)

with D(px) = λb
x(1−px)−λg

y(1−pxRx/Ry). The first term is the benefit from the fact that the

agent learns that project x is bad and then, until receiving news from project y, exploits

project y (instead of getting a payoff of 0 from project x). The second term corresponds

to the costs incurred when project y is good and there is a duration ∆ in which the agent

would have exploited project y, but exploits project x instead.

17Recall that we assumed the agent explores the ex-ante favorable project x after receiving news on project
y, even when having received news on project x as well.
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In the auxiliary problem, and as long as project x remains favorable, an optimal strat-

egy must explore project x if D(px) > 0 and cannot switch from exploring project x to

exploring project y if D(px) < 0. Thus, an optimal strategy entails an exploration switch

from project x to project y at the point in which D(px) = 0.

Now, D(px) is linear in px with slope −λb
x + λ

g
yRx/Ry . As long as λb

xRy , λ
g
yRx, which

is generically the case, D(px) has a non-trivial slope and there is only one point in which

exploration can switch from project x to project y.

Proof of Claim 2. If project L is explored, only good news yields a switch of the exploited

project. If project H is explored, absent news, the agent switches her exploited project

after t̄H (pL,pH ) has passed, when she is indifferent between the expected payoffs of both

projects. We now characterize t̄H (pL,pH ), where we drop the arguments when there is no

risk of confusion.

By definition, after a duration t̄H of exploring project H , the agent’s posterior that

project H is good declines to qpH , where q = pLRL
pHRH

∈ (0,1). Certainly, if the agent receives

good news on project H before reaching indifference, the corresponding posterior jumps to

1. The conditional probability that the agent reaches indifference when exploring project

H , conditional on project H being good, is therefore q(1−pH )
1−qpH .18 The exponential distribution

of news then yields:

e−λ
g
H t̄H =

q(1− pH )
1− qpH

.

The discount at the indifference time t̄H is given by w = e−rt̄H . As before, let ρz = λ
g
z /(r+λg

z ),

z = L,H , denote the expected discount at the time t̄H at which news first arrives when the

arrival rate is λg
z .

Suppose the agent explores project H indefinitely. As argued in the proof of Proposi-

tion 3, her payoff coincides with the payoff of an agent who, after time t̄H , sees all news

from project H—good or bad, at a (balanced) rate λ
g
H . So, a-priori, the agent expects to

receive e0 = pHRH up to a time that is exponentially distributed with parameter λ
g
H be-

yond the indifference time t̄H . After that time, she receives eH = pHRH +(1−pH )pLRL. The

agent’s expected payoff is therefore:

(1−wρH )e0 +wρHeH = e0 +wρH (eH − e0).

Now, suppose the agent explores project L instead. Define, analogously, eL = pLRL +

18The arguments are reminiscent of those used in the proof of Proposition A. Set β to satisfy pH = βqpH +
(1−β), so that β is the probability such that, if the agent explores project H , she will reach a time at which she
is indifferent between the projects. Let z be such that β = pH z+(1−pH ), so that z is the conditional probability
that the agent reaches indifference, conditional on project H being good. Simple algebra yields the specified
formula.
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pHRH (1− pL) to be the expected value from exploring project L upon indifference.

As shown in the proof of Proposition 3, the agent’s expected payoff is the same as in

the balanced news setting, and equals

(1− ρL)e0 + ρL(1− ρH )eL + ρLρHeH = e0 + ρL(1− ρH )(eL − e0) + ρLρH (eH − e0).

Thus, it is optimal to explore project H if and only if

ρH (w − ρL)(eH − e0) ≥ ρL(1− ρH )(eL − e0).

The statement of the claim then follows.

Proof of Proposition 4. The proof follows several claims:

Claim B.1 There exists an optimal policy with the property that, if it is optimal to explores project
H at some point when it is favorable, then, from that point on, it is optimal to explore project H
until news is received.

Proof of Claim B.1 Consider an auxiliary problem ΓA that coincides with the original prob-

lem Γ with the following modification: if the agent explores project H and project H is

currently weakly favorable, the agent receives both good news and bad news on project H

at a rate of λb
H . In particular, the agent has more information in ΓA than in Γ .

Any strategy described in the statement of the proposition generates the same payoff
in ΓA as it does in Γ . Indeed, if project H is favorable, and the agent explores it, then in

both Γ and ΓA, project H would remain favorable as long as no bad news arrive.

It suffices to show that, under the optimal strategy in ΓA, once the agent starts exploring

project H , she continues doing so until receiving news. Indeed, if the agent explores

project H in the auxiliary problem when project H is currently favorable, then the state

variable—her posterior—does not change. By dynamic programming principles, it must

be optimal to continue exploring project H until news arrives.

Claim B.2 If project L is favorable at the outset, then, at any point in which project H becomes
strictly favorable, it is optimal to explore project H until receiving news.

Proof of Claim B.2 Project H becomes strictly favorable when one of the following occurs.

First, upon arrival of bad news about project L or good news about project H , project H

becomes favorable and exploring either project is optimal. The second option is that the

agent explores project H . Since λb
H > λ

g
H , over time, the agent becomes more optimistic

about project H . In this case, by Claim B.1, the agent should continue exploring project H

.

For the next step of the proof, consider a balanced news setting with arrival rates λ
g
H
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for project H and λb
L for project L that starts with prior probabilities pH and pL such that L

is favorable. Let p̂L be such that the agent explores project H if pL ≥ p̂L, holding all other

parameters fixed. By Proposition 2,

λ
g
H (1− p̃H ) = λb

L(1− p̂L), (5)

where p̃H = pLRL/RH .

Claim B.3 If project L is favorable and pL > p̂L, then it is optimal to explore projectH until news.

Proof of Claim B.3 Consider an auxiliary problem ΓB, a modification of the original prob-

lem Γ in which exploring project L generates balanced news at a rate of λb
L. The agent is

weakly better off in ΓB relative to the original problem Γ since she has access to information

that arrives at higer rates. Furthermore, exploring project H until news generates the same

payoff in ΓB as it does in Γ : news about project H arrives at the same rate in both problems

and, in both, exploiting project H (or project L) forever once project H is observed to be

good (or bad) maximizes expected payoffs.

Suppose that project L is favorable and pL > p̂L. We show that, in ΓB, the agent optimally

explores project H until news. Assume, by way of contradiction, that it is optimal to

explore project L in ΓB.19 Absent news, exploring project L does not alter the agent’s beliefs

about the projects’ quality and, therefore, it must be optimal to explore project L until

news. Consider a deviation to first exploring project H for a short interval ∆ and then

exploring project L until news, where ∆ is sufficiently small so that, absent news during

the time period ∆, project L remains favorable. We claim that this deviation improves

payoffs. Suppose Alex plays the candidate strategy—exploring project L until news—and

Bailey follows the deviation.

Let τL and τH denote the random variables corresponding to the first arrival time of

news on project L and project H , respectively, where arrival rates are those specified in the

auxiliary problem ΓB. Both Alex and Bailey receive news on project z = L,H after exploring

project z for a duration τz. Thus, Alex’s and Bailey’s information is coupled. Furthermore,

Alex’s and Bailey’s payoffs from the suggested strategies are the same as before.

The difference between Bailey’s and Alex’s payoffs is then:

pHλ
g
H∆

r

r +λb
L

(RH − pLRL)− (1− pL)
λb
L

r +λb
L

r∆pHRH + o(∆).

The first term corresponds to the case in which Bailey receives good news on project H

in the initial duration of ∆ (occurring with probability pHλ
g
H∆), while Alex is delayed in

19Since news is balanced on project L, if it is optimal to explore project L at any posterior, it is optimal to
continue exploring project L as long as news does not arrive.
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learning about project H until receiving news on project L at time τL (occurring at a rate

of λb
L whether project L is good or bad). The expected discounted weight of that duration

is 1 − λb
L

r+λb
L

= r
r+λb

L
(see equation (2)). The second term corresponds to project L being bad.

In that case, conditional on not receiving news in the first period of ∆ (occurring with

probability 1−λg
H∆), Bailey would be delayed by ∆ relative to Alex in learning that project

L is bad. Observing that project L is bad would lead either agent to exploit project H ,

which generates an expected payoff of pHRH∆ (up to o(∆) due to updating on project H

during the initial period of ∆). The relevant expected discount at τL, when Alex learns that

project L is bad, is λb
L

r+λb
L
.

Reorganizing terms implies that the payoff difference is:

∆
r

r +λb
L

pHRH

(
λ
g
H (1− p̃H )−λb

L(1− pL)
)

+ o(∆) > 0,

where the inequality follows from our assumption that pL > p̂L. The conclusion of Claim

B.3 then follows using Claim B.1.

Claim B.4 If project L is favorable and pL ≤ p̂L, it is optimal to explore project L for some period,
and then explore project H until news.

Proof of Claim B.4 Consider an optimal strategy, and let T be the first time such that, ac-

cording to this strategy, if no news arrives up to time T , either project H becomes favorable

or the posterior that project L is good reaches p̂L. By Claims B.2 and and B.3, if no news

arrives by time T , it is optimal to explore project H . We claim that, before time T , it is

optimal to explore project L for some period and then switch to exploring project H .

Suppose, toward a contradiction, that the claim is violated. Then, there must be a

sufficiently small ∆, a fraction β > 0, and times t′ < t′′ < T with t′ −∆ > 0 and t′′ + ∆ < T ,

such that the agent optimally explores project H for an amount of time β∆ in I ′ = [t′−∆, t′]
and explores project L for an amount of time β∆ in I ′′ = [t′′ , t′′ +∆].

We now show that swapping the order of these β∆ exploration resources between the

intervals I ′ and I ′′ improves the agent’s expected payoff. Indeed, suppose Alex plays the

candidate strategy and Bailey performs the swap, and their news are coupled as follows:

1. All news coming from exploration that was not interchanged, which we call regular
news, are the same for Alex and Bailey.

2. The additional news on project L that Bailey receives from the additional β∆ explo-

ration during I ′ is received by Alex during I ′′

3. The additional news on project H that Alex receives from the additional β∆ explo-

ration during I ′ is the news received by Bailey during I ′′.
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We need to show that Bailey’s payoff is higher than Alex’s. We will, in fact, show that

this is the case even if Bailey does not play optimally: we assume that if Bailey receives

additional good news about project L, Bailey ignores this news and switches to exploring

project H only when either regular good news arrives about project L or when Alex re-

ceives the additional good news about project L (in which case Alex also switches to only

exploring project H).

Until time T , Alex and Bailey both exploit project L unless they received bad news

from project L or good news from project H . They gain different payoffs at time t ∈ [t′ , t′′]

only if they receive no regular news up to time t and either

1. bad news on project L is received by Bailey over I ′, in which case Bailey exploits

project H , while Alex exploits project L; or

2. good news on project H is received only by Alex over I ′, in which case Alex exploits

project H , while Bailey exploits project L.

Therefore, the difference in expected payoffs is

β∆

∫ t′′

t′
re−rtρ(t)

[
λb
L(1− pL(t))pH (t)RH −λ

g
HpH (t)(RH − pL(t)RL

]
dt +O(∆),

where ρ(t) is the probability that there were no regular news until time t; the probabilities

pH (t) and pL(t) are, respectively, the conditional probabilities that projects H and L are

good given this event; and p̃H (t) = pL(t)RL/RH . Rearranging terms, this payoff difference

equals:

β∆

∫ t′′

t′
re−rtρ(t)pH (t)RH

[
λb
L(1− pL(t))−λg

H (1− p̃H (t)
]

dt + o(∆) > 0,

where the inequality follows from the fact that pL(t) < p̂L for every t < t′′.

Claim B.5 If project H is favorable, it is optimal to explore project L for some period, and then
explore project H until news.

Proof of Claim B.5 Suppose RL > pHRH ≥ pLRL. From Claim B.1, once the agent starts

exploring project H , it is optimal to do so until news. Towards a contradiction, suppose

the agent explores project L until news. Absent news, at any time t > t̄L(pL,pH ), project L

becomes favorable. Claims B.3 and B.4 then lead to a contradiction.

If pHRH ≥ RL, news on project L cannot generate a switch in the agent’s exploited

project and exploring project L indefinitely is dominated. The claim then follows directly

from Claim B.1.

The proposition follows from Claims B.3, B.4, and B.5.
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