Commuting Infrastructure in Fragmented Cities

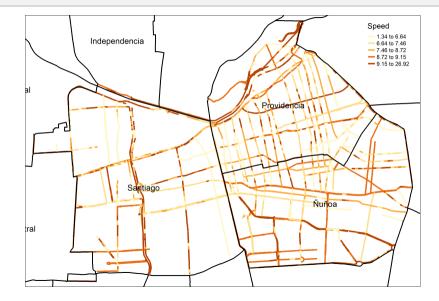
Olivia Bordeu^a

November 15, 2024

Fifth Women in International Economics Conference

^aPrinceton University

- Metropolitan areas are politically fragmented ightarrow 74 jurisdictions on average (OECD)
- However, municipalities are responsible for local transport infrastructure \rightarrow roads


Cities, local governments, and transport infrastructure

- Metropolitan areas are politically fragmented \rightarrow 74 jurisdictions on average (OECD)
- However, municipalities are responsible for local transport infrastructure \rightarrow roads
- When there are economic interactions across jurisdictions, decentralization can lead to under-provision of public goods and aggregate inefficiencies:
 - Significant commuting across governments:
 - Santiago \rightarrow 73% across municipalities + 80% of travel time in municipal roads

- Metropolitan areas are politically fragmented \rightarrow 74 jurisdictions on average (OECD)
- However, municipalities are responsible for local transport infrastructure \rightarrow roads
- When there are economic interactions across jurisdictions, decentralization can lead to under-provision of public goods and aggregate inefficiencies:
 - Significant commuting across governments:
 - Santiago \rightarrow 73% across municipalities + 80% of travel time in municipal roads

How does decentralization affect commuting infrastructure (roads) within cities? What are the implications for welfare and the distribution of economic activity?

Santiago: Main avenues across municipalities

- 1. Theory: City equilibrium \leftrightarrow Commuting infrastructure decided by municipalities
 - Internal structure of the city: Locations with different amenities and productivity
 - Households choose where to live and work within the city
 - Municipalities build infrastructure maximize their residents' and workers' wage bill

- 1. Theory: City equilibrium \leftrightarrow Commuting infrastructure decided by municipalities
 - Internal structure of the city: Locations with different amenities and productivity
 - Households choose where to live and work within the city
 - Municipalities build infrastructure maximize their residents' and workers' wage bill

Preview of the results: Decentralization distorts the **allocation of infrastructure**:

- Within the municipality
 - ightarrow Underinvest close to the boundary: a fraction of benefits is captured by neighboring mun

- 1. Theory: City equilibrium \leftrightarrow Commuting infrastructure decided by municipalities
 - Internal structure of the city: Locations with different amenities and productivity
 - Households choose where to live and work within the city
 - Municipalities build infrastructure maximize their residents' and workers' wage bill

Preview of the results: Decentralization distorts the **allocation of infrastructure**:

- Within the municipality
 - ightarrow Underinvest close to the boundary: a fraction of benefits is captured by neighboring mun
- Across municipalities
 - \rightarrow Productive/central municipalities underinvest
 - \rightarrow Peripheral/residential municipalities overinvest
 - $\rightarrow~$ "In between" municipalities underinvest the most

- 1. Theory: City equilibrium \leftrightarrow Commuting infrastructure decided by municipalities
 - Internal structure of the city: Locations with different amenities and productivity
 - Households choose where to live and work within the city
 - Municipalities build infrastructure maximize their residents' and workers' wage bill

Preview of the results: Decentralization distorts the **allocation of infrastructure**:

- Within the municipality
 - ightarrow Underinvest close to the boundary: a fraction of benefits is captured by neighboring mun
- Across municipalities
 - \rightarrow Productive/central municipalities underinvest
 - \rightarrow Peripheral/residential municipalities overinvest
 - $\rightarrow~$ "In between" municipalities underinvest the most
- \uparrow cross-jurisdiction commuting costs, \uparrow dispersed employment \implies polycentric city

2. Empirical Application: Santiago, Chile

- $\bullet~$ Testing the model predictions \rightarrow Infrastructure at the border
- Estimate the model
- Counterfactuals: Centralized Santiago

2. Empirical Application: Santiago, Chile

- $\bullet~$ Testing the model predictions \rightarrow Infrastructure at the border
- Estimate the model
- Counterfactuals: Centralized Santiago

Preview of the results from the counterfactual analysis:

• It is not only about building more, but allocating roads more efficiently.

- 1. Model: Simplified model \rightarrow Linear city
 - Mechanisms and model predictions
- 2. Empirical application: Santiago, Chile
 - Pattern of infrastructure at the border
 - Estimation of the model's parameters
 - Counterfactual analysis

Theoretical Framework

Overview of the model in words - Linear city

- Geography: Locations and edges in a line
 - Locations: Land for production and housing. Heterogeneous productivity and amenities

Overview of the model in words - Linear city

- Geography: Locations and edges in a line
 - Locations: Land for production and housing. Heterogeneous productivity and amenities
- Households:
 - Choose where to live and work, commute between home and work
- Commuting: Traveling through an edge is costly
 - Function of infrastructure (+ traffic flows in the full model)

Overview of the model in words - Linear city

- Geography: Locations and edges in a line
 - Locations: Land for production and housing. Heterogeneous productivity and amenities
- Households:
 - Choose where to live and work, commute between home and work
- Commuting: Traveling through an edge is costly
 - Function of infrastructure (+ traffic flows in the full model)
- Local governments: Subset of locations & edges.
 - Choose the edges' infrastructure level to maximize their residents' and workers' wage bill

Households:

- Households face land prices, q_{Ri} , amenities, \bar{B}_i , wages, w_j , and commuting costs, τ_{ij}
- + idiosyncratic preference shocks for residency and workplace: $\varepsilon_{ij} \sim \text{Fréchet}(\theta)$

$$\text{Travel Demand:} \quad L_{ij} = \tau_{ij}^{-\theta} \Big(\frac{\bar{B}_i}{q_{Ri}^{1-\alpha}} \Big)^{\theta} w_j^{\theta} \frac{L}{U^{\theta}}, \text{ where } U \equiv \Big[\sum_{rs} \tau_{ij}^{-\theta} \times \Big(\frac{\bar{B}_i}{q_{Ri}^{1-\alpha}} \Big)^{\theta} \times w_j^{\theta} \Big]^{\frac{1}{\theta}}$$

Households:

- Households face land prices, q_{Ri} , amenities, \overline{B}_i , wages, w_j , and commuting costs, τ_{ij}
- + idiosyncratic preference shocks for residency and workplace: $\varepsilon_{ii} \sim \text{Fréchet}(\theta)$

$$\text{Travel Demand:} \quad L_{ij} = \tau_{ij}^{-\theta} \Big(\frac{\bar{B}_i}{q_{Ri}^{1-\alpha}} \Big)^{\theta} w_j^{\theta} \frac{L}{U^{\theta}}, \text{ where } U \equiv \Big[\sum_{rs} \tau_{ij}^{-\theta} \times \Big(\frac{\bar{B}_i}{q_{Ri}^{1-\alpha}} \Big)^{\theta} \times w_j^{\theta} \Big]^{\frac{1}{\theta}}$$

Commuting:

-

$$au_{ij} = \prod_{k\ell} \mathbbm{1}_{ij}^{k\ell} d_{k\ell}, \quad$$
 where $\mathbbm{1}_{ij}^{k\ell} = 1$ if pair ij uses edge $k\ell$

• $d_{k\ell}$: The cost of commuting through (k, ℓ) is a function of the infrastructure, $I_{k\ell}$

Households:

- Households face land prices, q_{Ri} , amenities, \overline{B}_i , wages, w_j , and commuting costs, τ_{ij}
- + idiosyncratic preference shocks for residency and workplace: $\varepsilon_{ij} \sim \text{Fréchet}(\theta)$

$$\text{Travel Demand:} \quad L_{ij} = \tau_{ij}^{-\theta} \Big(\frac{\bar{B}_i}{q_{Ri}^{1-\alpha}} \Big)^{\theta} w_j^{\theta} \frac{L}{U^{\theta}}, \text{ where } U \equiv \Big[\sum_{rs} \tau_{ij}^{-\theta} \times \Big(\frac{\bar{B}_i}{q_{Ri}^{1-\alpha}} \Big)^{\theta} \times w_j^{\theta} \Big]^{\frac{1}{\theta}}$$

Commuting:

$$au_{ij} = \prod_{k\ell} \mathbb{1}_{ij}^{k\ell} d_{k\ell}, \quad$$
 where $\mathbb{1}_{ij}^{k\ell} = 1$ if pair ij uses edge $k\ell$

• $d_{k\ell}$: The cost of commuting through (k, ℓ) is a function of the infrastructure, $I_{k\ell}$

Firms: Competitively produce a freely traded numeraire good using land and labor

A local government g chooses I_{kℓ} in their jurisdiction {J^g, E^g} to maximize their residents' and workers' wage bill, minus building costs:

$$\max_{\mathrm{I}_{k\ell}\in\mathcal{E}^{g}} \quad \sum_{ij} \left\{ \omega_{\mathsf{R}} \mathbb{1}[i\in\mathcal{J}^{g}] L_{ij} w_{j} + \omega_{\mathsf{F}} \mathbb{1}[j\in\mathcal{J}^{g}] L_{ij} w_{j} \right\} - \sum_{(k\ell)\in\mathcal{E}^{g}} \delta^{\mathrm{I}}_{k\ell} \mathrm{I}_{k\ell}$$

A local government g chooses I_{kℓ} in their jurisdiction {J^g, E^g} to maximize their residents' and workers' wage bill, minus building costs:

$$\max_{\mathbf{I}_{k\ell}\in\mathcal{E}^{g}} \sum_{ij} \left\{ \omega_{\mathsf{R}} \underbrace{\mathbb{1}[i\in\mathcal{J}^{g}]}_{\mathsf{Residents}} L_{ij}w_{j} + \omega_{\mathsf{F}} \underbrace{\mathbb{1}[j\in\mathcal{J}^{g}]}_{\mathsf{Workers}} L_{ij}w_{j} \right\} - \sum_{(k\ell)\in\mathcal{E}^{g}} \delta^{\mathsf{I}}_{k\ell} \mathbf{I}_{k\ell}$$

A local government g chooses I_{kℓ} in their jurisdiction {J^g, E^g} to maximize their residents' and workers' wage bill, minus building costs:

$$\max_{\mathbf{I}_{k\ell}\in\mathcal{E}^{g}} \quad \sum_{ij} \left\{ \omega_{\mathsf{R}} \mathbb{1}[i \in \mathcal{J}^{g}] \mathcal{L}_{ij} \mathbf{w}_{j} + \omega_{\mathsf{F}} \mathbb{1}[j \in \mathcal{J}^{g}] \mathcal{L}_{ij} \mathbf{w}_{j} \right\} - \sum_{(k\ell)\in\mathcal{E}^{g}} \delta^{\mathrm{I}}_{k\ell} \mathbf{I}_{k\ell}$$

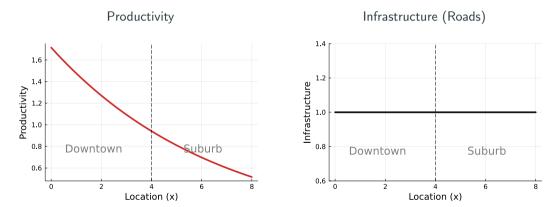
A local government g chooses I_{kl} in their jurisdiction {J^g, E^g} to maximize their residents' and workers' wage bill, minus building costs:

$$\max_{\mathrm{I}_{k\ell}\in\mathcal{E}^{g}} \quad \sum_{ij} \left\{ \omega_{\mathsf{R}} \mathbb{1}[i\in\mathcal{J}^{g}] L_{ij} w_{j} + \omega_{\mathsf{F}} \mathbb{1}[j\in\mathcal{J}^{g}] L_{ij} w_{j} \right\} - \sum_{(k\ell)\in\mathcal{E}^{g}} \delta^{\mathrm{I}}_{k\ell} \mathrm{I}_{k\ell}$$

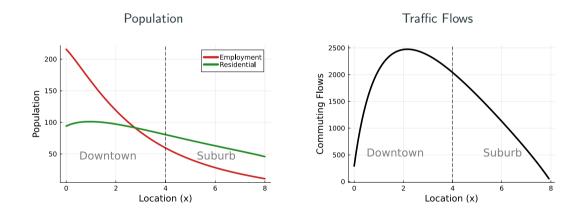
- This objective function nests the following:
 - 1. Maximize land value when

$$\omega_{\mathsf{R}} = (1 - \alpha), \quad \omega_{\mathsf{F}} = \frac{(1 - \beta)}{\beta}$$

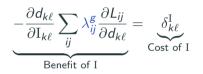
2. Maximize tax revenue when


$$\omega_{\mathsf{R}} = \tau_{\mathsf{H}}(1-\alpha), \quad \omega_{\mathsf{F}} = \tau_{\mathsf{W}}$$

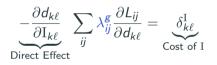
A local government g chooses I_{kl} in their jurisdiction {J^g, E^g} to maximize their residents' and workers' wage bill, minus building costs:


$$\max_{\mathbf{I}_{k\ell}\in\mathcal{E}^{g}} \quad \sum_{ij} \left\{ \omega_{\mathsf{R}} \mathbb{1}[i\in\mathcal{J}^{g}] L_{ij} w_{j} + \omega_{\mathsf{F}} \mathbb{1}[j\in\mathcal{J}^{g}] L_{ij} w_{j} \right\} - \sum_{(k\ell)\in\mathcal{E}^{g}} \delta^{\mathsf{I}}_{k\ell} \mathbf{I}_{k\ell}$$

- Subject to:
 - 1. Equilibrium travel demands: $L_{ij} [\lambda_{ij}^g]$
 - 2. Equilibrium wage (from labor demand): $w_i [\eta_{F_i}^g]$
 - 3. Residential land market clearing: $q_{Ri} \left[\eta_{Ri}^{g} \right]$
- Government g takes other governments g' infrastructure investments as given



Example city: Endogenous quantities



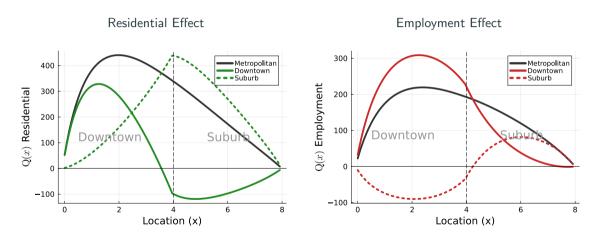
Optimal Infrastructure

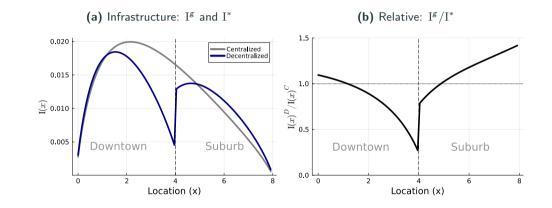
• From the F.O.C. with respect to $I_{k\ell}$:

• From the F.O.C. with respect to $I_{k\ell}$:

• From the F.O.C. with respect to $I_{k\ell}$:

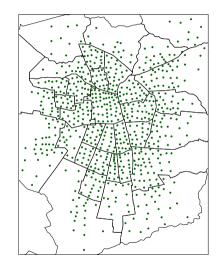
• $\sum_{ij} \lambda_{ij}^{g} \frac{\partial L_{ij}}{\partial d_{k\ell}}$ is the total value captured by government g from a reduction in $d_{k\ell}$:


• From the F.O.C. with respect to $I_{k\ell}$:

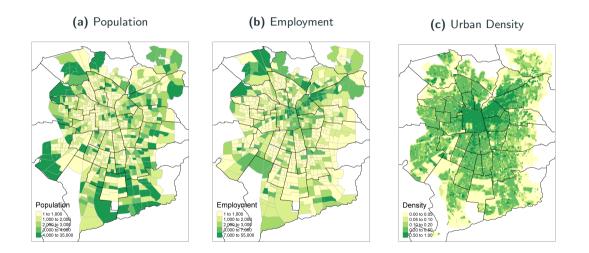

• $\sum_{ij} \lambda_{ij}^{g} \frac{\partial L_{ij}}{\partial d_{k\ell}}$ is the total value captured by government g from a reduction in $d_{k\ell}$:

$$\underbrace{\sum_{ij} \left(\mathbb{1}[i \in \mathcal{J}^{g}] \omega_{\mathsf{R}} w_{j} + \eta_{Ri}^{g} \frac{\partial q_{Ri}}{\partial L_{ij}} \right) \frac{\partial L_{ij}}{\partial d_{k\ell}}}_{\mathsf{Residential Effect:} \equiv Q_{k\ell}^{g}(\mathsf{R})} + \underbrace{\sum_{ij} \left(\mathbb{1}[j \in \mathcal{J}^{g}] \omega_{\mathsf{F}} w_{j} + \eta_{Fj}^{g} \frac{\partial w_{j}}{\partial L_{ij}} \right) \frac{\partial L_{ij}}{\partial d_{k\ell}}}_{\mathsf{Employment Effect:} \equiv Q_{k\ell}^{g}(\mathsf{F})}$$

Residential and employment forces



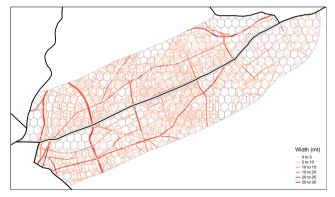
Centralized vs Decentralized Equilibrium



Empirical Application: Santiago

- Origin-Destination Travel Survey (2012) $\rightarrow L_{ij}$
- Land use and tax appraisal data (SII, 2014) \rightarrow \bar{H}_R and \bar{H}_F
- Traffic flows and speeds (2022) for 70 locations
 - Flows: Automatic traffic measurement stations.
 - Speed: Google Maps API, real-time speed
- Road network:
 - Roads by type (ownership) documented by the government (Census 2017)
 - Open Street Maps: Width and number of lanes, type of road

Data: Population, Employment and Density Distribution



Infrastructure at the border

Road density at the border between municipalities

- Select borders that: 1) do not coincide with a highway, 2) smooth geography
- Measure percentage of land covered in roads in a buffer around the border

Figure 3: Example of one border between municipalities

1. Decreasing density of roads closer to the border

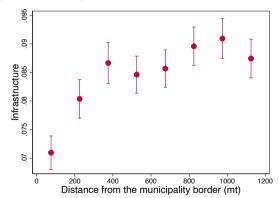
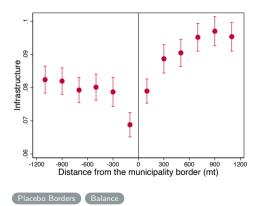
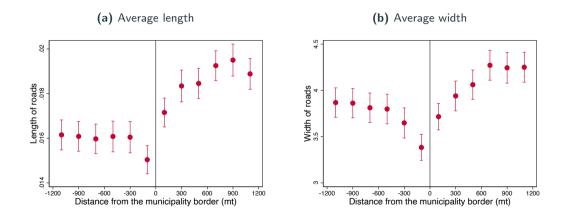



Figure 4: Average road density as function of distance

2. Discontinuity in road density at the border between municipalities


Figure 5: Average road density

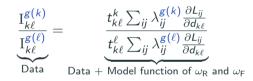
- Ordering procedure around the border:
 - $\rightarrow\,$ Average infrastructure: Highest overall level on the right side of the border
- Similar pattern in other cities in Latin

America: Other cities

3. Discontinuity in road density at the border: "Extensive" vs "Intensive"

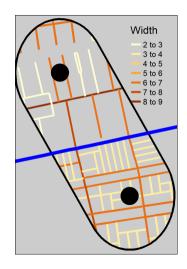
20

Model Estimation


- 1. Land share parameters: (1α) and (1β)
 - Household survey (CASEN): Land share of utility, 1-lpha= 0.25
 - From Tsivanidis (2019): Land share of production, $1 \beta = 0.2$

- 1. Land share parameters: (1α) and (1β)
 - Household survey (CASEN): Land share of utility, 1-lpha= 0.25
 - From Tsivanidis (2019): Land share of production, $1 \beta = 0.2$
- 2. Parameters of the transportation technology:
 - Congestion elasticity, $\sigma = 0.14$: real time flow and speed data in Santiago (Estimation)
 - Infrastructure elasticity, $\xi = 0.13$: Discontinuity in infrastructure at the border
 - Exogenous edge-level speed, $\bar{t}_{k\ell}$: invert given σ , ξ , and travel times from Google maps

Estimation: Government Weights


Take a link (k, ℓ) across municipalities: $g(k)! = g(\ell)$

- Assumption: Building costs are the same across the municipality border
- This implies the following moment condition:

• By minimum distance estimation:

$$\omega_{\rm R} = 0.33, \quad \omega_{\rm F} = 0.26$$

Estimation: Other Parameters

- 3. Location characteristics:
 - Use the gravity equation and observed L_{ij} to invert $\{\bar{A}_i, \bar{B}_i\}$
- 4. Building costs: Building costs at the border
 - Invert from the model such that the observed infrastructure = $I_{k\ell}^g$ from the model:

$$\underbrace{-\frac{\partial d_{k\ell}}{\partial I_{k\ell}} \left(1 - \frac{\partial Q_{k\ell}}{\partial d_{k\ell}} \frac{\partial d_{k\ell}}{\partial Q_{k\ell}}\right)^{-1} \sum_{ij} \lambda_{ij}^g \frac{\partial L_{ij}}{\partial d_{k\ell}}}_{\text{Data+Model}} = \underbrace{\delta_{k\ell}^{\text{I}}}_{\text{Building Cost}}$$

Estimation: Other Parameters

- 3. Location characteristics:
 - Use the gravity equation and observed L_{ij} to invert $\{\bar{A}_i, \bar{B}_i\}$
- 4. Building costs: Building costs at the border
 - Invert from the model such that the observed infrastructure = $I_{k\ell}^g$ from the model:

$$\underbrace{-\frac{\partial d_{k\ell}}{\partial I_{k\ell}} \Big(1 - \frac{\partial Q_{k\ell}}{\partial d_{k\ell}} \frac{\partial d_{k\ell}}{\partial Q_{k\ell}}\Big)^{-1} \sum_{ij} \lambda_{ij}^g \frac{\partial L_{ij}}{\partial d_{k\ell}}}_{\text{Data+Model}} = \underbrace{\delta_{k\ell}^{\text{I}}}_{\text{Building Cost}}$$

- 5. Shape parameters of idiosyncratic preferences: μ , θ , and ρ
 - City choice: From Head and Mayer (2013) $\mu = 2$
 - Within city residence-work choice: From Pérez Pérez et al. (2022): $\theta = 8$
 - Commuting Route choice: I am setting $\rho = 90$ (condition for spectral radius <1)

Counterfactual: Centralized City

Two counterfactuals:

- 1. Centralized city: one metropolitan planner choosing the transport infrastructure
- 2. Centralized city | budget: metropolitan planner, conditional to baseline budget

Variable	Centralized	Centralized Budget	
Population	5.3	3.5	
Welfare	2.3	1.5	
Surplus	4.2	3.9	
Expenditure in Infrastructure	77	0	
Average commuting costs	-0.9	-0.3	

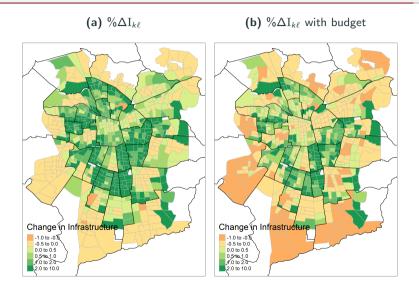
Table 1: Aggregate effects (%)

Two counterfactuals:

- 1. Centralized city: one metropolitan planner choosing the transport infrastructure
- 2. Centralized city | budget: metropolitan planner, conditional to baseline budget

Table 1: Aggregate effects (%)

Variable	Centralized	Centralized Budget	
Population	5.3	3.5	
Welfare	2.3	1.5	
Surplus	4.2	3.9	
Expenditure in Infrastructure	77	0	
Average commuting costs	-0.9	-0.3	


Two counterfactuals:

- 1. Centralized city: one metropolitan planner choosing the transport infrastructure
- 2. Centralized city | budget: metropolitan planner, conditional to baseline budget

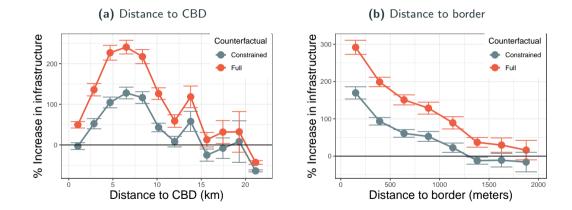
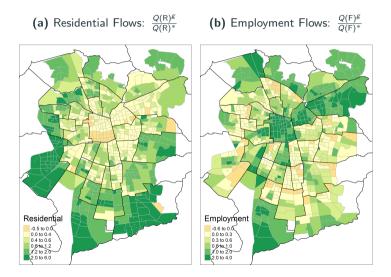
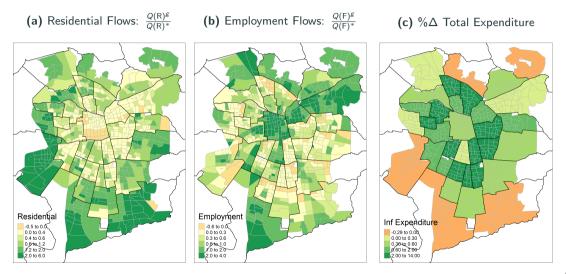
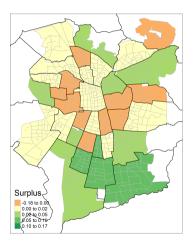

Variable	Centralized	Centralized Budget	Relative
Population	5.3	3.5	66%
Welfare	2.3	1.5	65%
Surplus	4.2	3.9	93%
Expenditure in Infrastructure	77	0	-
Average commuting costs	-0.9	-0.3	30%

 Table 1: Aggregate effects (%)


Centralized counterfactual: Distribution of $\Delta I_{k\ell}$ in space


Centralized counterfactual: Distribution of $\Delta I_{k\ell}$ in space

Explaining under-investment: Residential and employment forces



Explaining under-investment: Residential and employment forces

Discussion: Trade-offs of decentralization

Figure 10: Δ in surplus

- Centralized city:
 - \implies Bigger + more "specialized" + longer commutes
- Decentralized city:
 - \implies Smaller + Polycentric + "15-minute" city
- Trade-offs of these two urban patters:
 - \implies Winners and losers of decentralization

Conclusion

- Local governments around the world play an important role in local commuting infrastructure investment
- Metropolitan areas are highly fragmented
- This paper:

New quantitative spatial model studying local governments' incentives to invest in commuting infrastructure \implies misallocation of infrastructure

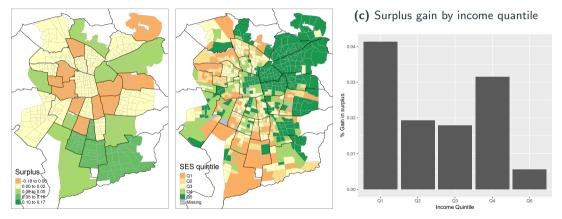
- Local governments around the world play an important role in local commuting infrastructure investment
- Metropolitan areas are highly fragmented
- This paper:

New quantitative spatial model studying local governments' incentives to invest in commuting infrastructure \implies misallocation of infrastructure

Future research:

- Incorporate households' socio-economic heterogeneity Results by SES
- Environmental externalities: pollution and disamenities from traffic/infrastructure

Thank you!


Santiago and its municipal infrastructure (back

- Metropolitan infrastructure is provided by municipalities and the national governments:
 - 83% of "large" roads are municipal
 - 96% of all roads are municipal
- Using Google Maps and the Origin-Destination travel survey (2012):
 - The average commuting trip **spends 80% of the travel time** on municipal infrastructure
- I focus on the road network:
 - 62% of commutes use surface transport (car, taxi, bus, bike). 31% travel by car

Winners and losers by socio-economic status

(a) Δ in surplus by municipality (b) SES

Government's Problem: Constraints

• Travel demand:

$$L_{ij} = au_{ij}^{ heta} \Big(rac{ar{B}_i}{r_{Ri}^{1-lpha}} \Big)^{ heta} w_j^{ heta} rac{L}{ar{W}^{ heta}}, \quad orall i, j \in \mathcal{J}$$

• Wage (from labor demand)

$$w_i = ar{\mathcal{A}}_i \Big(rac{eta}{1-eta} rac{ar{\mathcal{H}}_{Fi}}{\mathcal{L}_{Fi}} \Big)^{1-eta}, \hspace{1em} orall i \in \mathcal{J}$$

• Residential land market clearing:

$$r_{Ri} = (1 - \alpha) \frac{L_{Ri}}{\bar{H}_{Ri}} \mathbb{E}[w_k | i], \quad \forall i \in \mathcal{J}$$

• Business land market clearing:

$$r_{Fi} = \left(rac{w_i^{eta}}{ar{A}_i}
ight)^{rac{1}{eta-1}}, \quad \forall i \in \mathcal{J}$$

_

• Commuting costs:

$$au_{ij} = \prod_{(k,\ell)\in\mathcal{R}_{ij}} d_{k\ell}, \quad d_{k\ell} = \exp\left(ar{t}_{k\ell} \left(rac{Q_{k\ell}^o}{I_{k\ell}^arepsilon}
ight)
ight)$$

• Idiosyncratic preferences for routes + no restrictions on possible routes:

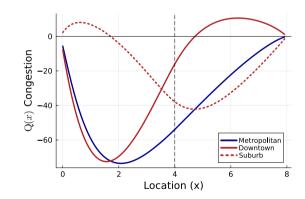
$$\mathbf{A} \equiv [d_{ij}^{-\rho}], \quad \tau_{ij} \equiv \Big(\sum_{r \in \mathcal{R}_{ij}} \tau_{ij,r}^{-\rho}\Big)^{-\frac{1}{\rho}} \implies \tau_{ij}^{-\rho} = \sum_{K=0}^{\infty} A_{ij}^{K}$$

• Under some conditions of **A**:

$$\sum_{K=0}^{\infty} \mathbf{A}^{K} = (\mathbf{I} - \mathbf{A})^{-1} \equiv \mathbf{B} \implies \tau_{ij} = b_{ij}^{-\frac{1}{\rho}}$$

Role of congestion

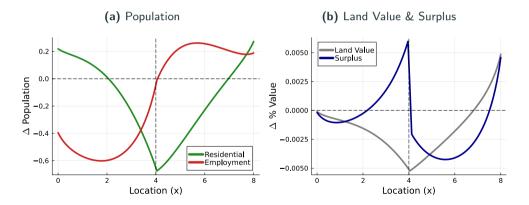
• Now the optimal infrastructure is given by:


$$\underbrace{-\frac{\partial d_{k\ell}}{\partial \mathbf{I}_{k\ell}} \Big(1 - \frac{\partial Q_{k\ell}}{\partial d_{k\ell}} \frac{\partial d_{k\ell}}{\partial Q_{k\ell}}\Big)^{-1} \sum_{ij} \lambda_{ij}^{g} \frac{\partial L_{ij}}{\partial d_{k\ell}}}_{ij} = \underbrace{\delta_{k\ell}^{\mathbf{I}}}_{\text{Building cost}}$$

• $\sum_{ij} \lambda_{ij}^{g} \frac{\partial L_{ij}}{\partial d_{k\ell}}$ is the total land value captured by government g from a reduction in $d_{k\ell}$:

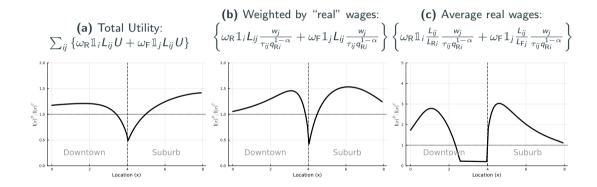
$$\sum_{ij} \lambda_{ij}^{g} \frac{\partial L_{ij}}{\partial d_{k\ell}} = \underbrace{\sum_{ij} \eta_{Ri}^{g} \frac{\partial q_{Ri}}{\partial L_{ij}} \frac{\partial L_{ij}}{\partial d_{k\ell}}}_{\text{Residential E.: } \equiv Q_{k\ell}^{g}(\mathsf{R})} + \underbrace{\sum_{ij} \eta_{Fj}^{g} \frac{\partial q_{Fj}}{\partial L_{ij}} \frac{\partial L_{ij}}{\partial d_{k\ell}}}_{\text{Employment E.: } \equiv Q_{k\ell}^{g}(\mathsf{F})} + \underbrace{\sum_{ij} \sum_{k\ell} \phi_{k\ell}^{g} \left(\frac{\partial Q_{k\ell}}{\partial L_{ij}} \frac{\partial L_{ij}}{\partial d_{k\ell}} + \frac{\partial Q_{k\ell}}{\partial \pi_{ij}^{k\ell}} \frac{\partial \pi_{ij}^{k\ell}}{\partial d_{k\ell}} \right)}_{\text{Congestion Effect: } \equiv Q_{k\ell}^{g}(\mathsf{Q})}$$

Congestion effect

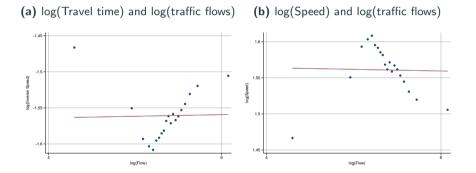

back

Effect to City Structure (back)

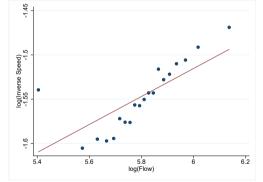
• Difference between decentralized and centralized equilibrium:


 $\Delta X = X_{\text{Decentralized}} - X_{\text{Centralized}}$

Different weights for workers relative to residents (back)



Other objective functions for the governments back


70 locations in Santiago \rightarrow Relationship between flows and speed

Bin-scatter controlling for Fixed Effects: day of the week, hour of the day, and intersection.

Congested roads: Relationship between flows and speed

Bin-scatter controlling for Fixed Effects: day of the week, hour of the day, and intersection.

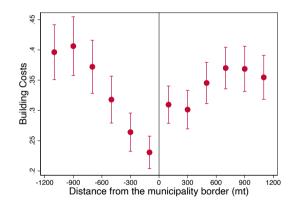
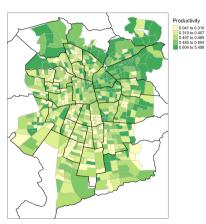
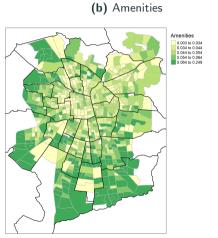


Table 2: OLS			
	In(Speed)		
In(Traffic Flow)	-0.144*** (0.0103)		
Observations Adjusted <i>R</i> ²	35068 0.617		
	a weak intersection		

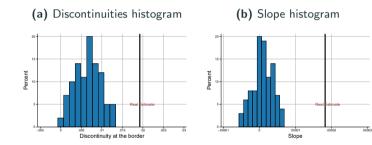

FE: Hour, day of the week, intersection.

Recovered building costs at the border

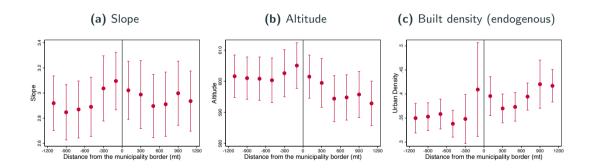

Figure 16: Average building cost

Amenities and Productivities

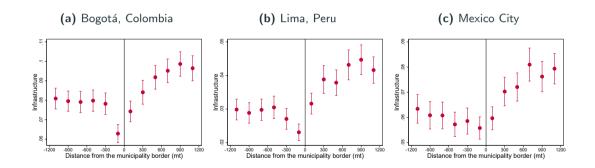
(a) Productivities


back

Placebo Test: Fake municipality borders


Figure 18: Placebo Analysis

Placebo municipalities



Other variables at the border between municipalities

Other cities in Latin America have similar patterns **back**

