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Abstract

Multinational firms colocate production and innovation by offshoring them to the
same host country or region. In this paper, I examine the determinants of multinational
firms’ production and innovation locations. Exploiting plausibly exogenous variations
in tariffs, I find complementarities between production and innovation within host coun-
tries and regions. To evaluate manufacturing reshoring policies, I develop a quantitative
multicountry offshoring location choice model. I allow for rich colocation benefits and
cross-country interdependencies and prove supermodularity of the model to solve this
otherwise NP-hard problem. I find the effects of manufacturing reshoring policies are
nonlinear, contingent upon firm heterogeneity, and they accumulate dynamically.
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I Introduction
Multinational firms account for a large share of global production and innovation.1 These
firms produce and innovate in various countries, choosing the optimal locations for each
activity. Whether a firm should produce and innovate in the same host country or region
turns on the size of the colocation benefits for these activities relative to the force separating
them. This separating force arises from the fact that countries with low production costs
are usually not countries with high returns to innovation (Antras, Fort and Tintelnot, 2017;
Arkolakis, Ramondo, Rodríguez-Clare and Yeaple, 2018). Nevertheless, in the data, the
former force dominates, and firms tend to colocate production and innovation. As Figure 1
shows, large destinations of offshore production are often also large destinations of offshore
innovation for U.S. firms.

The colocation benefits are twofold. First, synergy exists between production and innova-
tion, as direct interactions between the manufacturing and R&D teams reduce communica-
tion and coordination costs, spur new ideas, and increase innovation efficiencies (Bahar, 2020;
Fort, Keller, Schott, Yeaple and Zolas, 2020). For instance, to invent new medicines, product
designers at biotechnology companies must deeply understand feasible manufacturing pro-
cesses, as changes in product design often directly impact the production methods to be used
and their technical specifications (Ketokivi, 2006; Pisano and Shih, 2012). Hewlett-Packard
and Texas Instruments operate laboratories in Singapore close to their manufacturing facili-
ties to promote interactions between plant engineers and product development teams during
trial runs of new chips (Kuemmerle, 1997). Second, having local production can reduce the
costs of innovation. Firms often locate their innovation lab and manufacturing plant at the
same place to save on overhead expenses in terms of rent, utilities, insurance, and support-
ive infrastructure (Alcácer and Delgado, 2016). Some of the overhead cost sharing, such as
for the management team and legal and accounting services, can happen not only within a
country but also across borders within a region (ASEAN, 2017).2

I first use microdata to show that multinational firms offshore more innovation to a host
country if they have more production there and if they produce more in other countries
within the region. This pattern could be explained by inherent connections between pro-

1Multinational firms constitute nearly 80% of U.S. imports and exports in the year 2000 (Bernard, Jensen
and Schott, 2009). Sales from foreign affiliates of U.S. manufacturing multinationals exceeded double the
value of total U.S. exports. Furthermore, multinational firms are among the most innovation-intensive firms
and account for the majority of innovation investment worldwide (see UNCTAD, 2015). They account for
91% of the innovation investment performed by firms in the U.S. (National Science Board, 2014).

2For example, Deloitte provides auditing and accounting services to multiple Samsung affiliates, including
Samsung Electronics in South Korea and various subsidiaries in China. Nissan has set up a regional R&D
hub in Thailand to support operations in Indonesia, the Philippines, Malaysia, and Vietnam.
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duction and innovation, as well as by unobserved affiliate traits and correlation in country
characteristics (the reflection problem in Manski (1993)). To isolate the former, I exploit
plausibly exogenous variation in tariffs to establish a causal impact of production on inno-
vation. I find that an increase in the U.S. import tariff for a host country reduces the firm’s
offshored production and innovation both within that country and in the surrounding region.

Motivated by the empirical findings, I develop a dynamic framework of offshoring location
choices to answer several key questions. On a micro level, to what extent do colocation
benefits shape the impact of multinational firms’ production relocations on their choices
of innovation locations? On an aggregate level, how do recent reshoring policies aimed at
bringing back U.S. manufacturing affect the global allocation of innovation?3 In particular,
when production is reshored, will innovation continue to stay in the host country, return to
the U.S., or flow to third-party countries?

Bilateral trade policies can have significant third-country effects. For instance, as a
result of recent trade tensions between the U.S. and China, many multinational firms have
relocated activities from China to other East Asian countries, such as Vietnam (see Table 1.11
in ASEAN, 2021, for examples of such firms). Allowing for cross-country interdependencies
in firm decisions is necessary for understanding these third-country effects. However, this
creates a hard permutation problem, as optimal choices in one country affect payoffs in other
countries. Firms simultaneously choose the set of countries in which to produce and another
set of countries in which to innovate. The number of possible country combinations, 22L,
grows exponentially with the number of countries, L, and quickly becomes intractable when
the model includes more than a few countries. I establish a supermodularity property of the
model and leverage it to efficiently solve this combinatorial problem in a dynamic setting.

To measure firm-level offshore production and innovation in each foreign country, I use
administrative data from the U.S. Census Bureau and explore a previously underused survey
module in their Business R&D Survey. This module collects information on firms’ annual
R&D expenditure and provides a comprehensive breakdown of that expenditure by foreign
countries. I combine these rich data with two identification strategies to establish a causal
link between production and innovation. In the first strategy, I construct a shift-share
style, firm-country-year specific tariff rate and use it as an instrument for the firm’s offshore
production. In the second strategy, I exploit plausibly exogenous origin-by-product tariff
changes during the Trump Tariffs policy.

The underlying identification argument for both empirical strategies is that U.S. import
3Examples of U.S. reshoring policies include the Tax Cuts and Jobs Act, which lowered the domestic

corporate tax rate from 35% to 21%, and the CHIPS and Science Act, which allocated $280 billion to
enhance domestic research and semiconductor manufacturing (White House, 2022).
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tariff shocks affect firms’ production offshoring to the host country by affecting the cost of
shipping goods across borders. However, these tariff shocks would only impact firms’ inno-
vation efforts in that country if there is an interaction between production and innovation.
For both identification strategies, I find that increasing tariffs for a host country lead to
declining production and innovation both within that country and the surrounding region,
indicating a positive causal impact of production on innovation.

In my modeling framework, multinational firms choose offshoring destinations for pro-
duction and innovation, taking into account colocation benefits and how decisions in one
country impact payoffs in others. Their productivity is endogenously affected by the offshore
innovation investment and its proximity to production activities. The optimal choice of off-
shoring locations is contingent upon countries’ production costs and returns to R&D, and
most importantly, the magnitude of synergies and cross-country interdependencies between
production and innovation. These decisions are dynamic and also influenced by individual
firm characteristics and their history of activities.

The model is estimated using a three-step procedure. First, I estimate countries’ produc-
tion costs based on their respective shares in firms’ overall offshore production, following the
method in Antras, Fort and Tintelnot (2017). Next, I draw from the production function
estimation literature and employ a control function approach to back out input elasticities
and parameters that govern the returns to offshore R&D.

The estimated colocation forces and interdependencies from the first two steps ensure
that the firm’s lifetime objective function is supermodular. This property is particularly
advantageous, allowing me to adapt a recently developed algorithm by Alfaro-Ureña, Castro-
Vincenzi, Fanelli and Morales (2023) to solve the firm’s dynamic combinatorial discrete choice
problem. With the model solutions in hand, the final step involves applying the method of
simulated moments to estimate the dynamic costs associated with offshoring production and
innovation, targeting moments informed by firms’ average offshoring probabilities.

The synergy effect in the model is identified by measuring how firm productivity responds
to offshoring colocation choices. This effect can vary over time and depending on host
country’s characteristics. Residual colocation patterns reflect the cost-sharing effect. I find
that offshoring innovation alongside production results in 0.06% to 0.2% greater productivity
gains compared to offshoring innovation alone. The magnitude of the synergy effect is large
enough to explain more than 95% of the colocation pattern, and thus, the cost-sharing
mechanism has a relatively minor impact.

I validate my model by simulating the Trump Tariffs and comparing its predictions to
the IV estimates obtained from Census microdata. The IV estimates suggest that the Trump
Tariffs led to a 7.2% decrease in imports from China and a 0.1 percentage point reduction
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in the likelihood of innovating there. In comparison, my model predicts a 6.5% decline in
imports and a 0.06 percentage point decrease in the probability of offshoring innovation.

Next, I apply my model to assess the impact of counterfactual bilateral trade policies that
negatively affect U.S. firms’ production offshoring to China. While these policies successfully
reshore production back to the U.S., the associated reshoring of innovation is modest. There
are two reasons why innovation in the U.S. does not significantly increase. First, some of the
innovation leaving China is redirected to alternative countries like Brazil and France, which
offer a competitive mix of low production costs and relatively high returns on innovation.
Second, because China is estimated to have the highest potential for offshore production
but relatively smaller returns on innovation, many firms choose to produce in China while
conducting R&D in the U.S. When these firms face a negative shock, they scale down global
operations, reducing their U.S. innovation as well.

Consistently, I find that third-country effects are significant for these bilateral trade
policies. For example, when the U.S. raises tariffs on China by 14% (resulting in a 30%
reduction in China’s production-offshoring potential), the likelihood of U.S. firms offshoring
R&D to China decreases by 0.13 percentage points, while the probability for the rest of the
world declines by 0.15 percentage points.

I also examine the roles of firm heterogeneity and dynamics in my model. Firm het-
erogeneity introduces nonlinearity in the effects of trade policies: many small firms, despite
colocation benefits, choose to produce in China due to its low costs but innovate in other
countries with higher R&D returns. Moderate trade shocks primarily impact these firms,
resulting in a counterintuitive increase in China’s share of global R&D. However, larger
shocks, including the extreme case of decoupling, impact even the most productive firms
that innovate in China, thus leading to a decline in China’s share of global R&D.

Finally, by incorporating an endogenous innovation process, my model speaks to the
dynamic effects of trade policies that are absent in previous static models. I find, for instance,
that a 30% increase in trade costs with China decreases U.S. firms’ productivity only slightly
at first but by 0.45% over a decade.

Related Literature. My primary contribution is to provide causal evidence and an em-
pirical framework for analyzing the sources and policy implications of colocation benefits
and cross-country interdependencies. The synergy effect, where colocating innovation with
production leads to greater productivity growth, is identified as the key driver of colocation
benefits. My estimate of the synergy effect adds to the literature on endogenous innovation
and firm performance. Previous studies have empirically estimated the general returns of
R&D on productivity gains (Doraszelski and Jaumandreu, 2013), the returns when R&D is
pursued alongside exporting (Aw, Roberts and Xu, 2011), and the returns when domestic
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R&D is combined with immigrant researchers and imported R&D services (Fan, Lee and
Smeets, 2022). My framework extends this by incorporating multi-country R&D choices and
explicitly accounting for the direct colocation benefits between production and innovation.

This paper closely relates to the relatively nascent empirical literature on the colocation
of production and innovation. Studies by Tecu (2013), Lan (2019), Delgado (2020), and
Fort, Keller, Schott, Yeaple and Zolas (2020) provide evidence of the benefits of colocating
production and innovation in the same localized area. While my study is consistent with
the presence of localized colocation benefits, its primary focus is on establishing the colo-
cation pattern on an international scale by analyzing multi-country location choices. I also
contribute to this literature by leveraging plausibly exogenous tariff variations across a wide
range of countries to provide causal evidence for both within-location and cross-location
complementarities between production and innovation.4 My findings that higher tariffs re-
duce innovation within the host country are consistent with the observations of Branstetter,
Chen, Glennon and Zolas (2021). Furthermore, I show that higher tariffs in the host country
also reduce innovation in other countries within the same region, suggesting the presence of
cross-country colocation benefits. Lastly, I offer an empirical framework that quantifies the
mechanisms and policy implications of these colocation benefits.

My context of firms’ global location choices engages with a vibrant research area on
multinational production, sourcing, and innovation (Rodríguez-Clare, 2010; Arkolakis, Ra-
mondo, Rodríguez-Clare and Yeaple, 2018; Fan, 2019). Antras, Fort and Tintelnot (2017)
develop a framework for global sourcing and establish conditions under which sourcing from
different countries becomes complementary. I integrate their framework with elements from
the R&D literature, enabling a simultaneous treatment of foreign production and innova-
tion. Bilir and Morales (2020) provide a thorough treatment of multinational innovation by
distinguishing between the different scopes of headquarter and affiliate R&D. Bøler, Moxnes
and Ulltveit-Moe (2015) explore the complementarity between R&D and imports driven by
scale effects. My model, while accounting for the scale effect, primarily introduces direct
interactions between production and innovation through synergy and cost-sharing effects.
Furthermore, my study distinguishes itself by solving the dynamic location choice problem
faced by multinational firms—an aspect often overlooked due to technical complexities, but
crucial for generating rich implications for offshoring and reshoring policies.

Methodologically, since firms in my model choose a set of production and innovation
locations rather than making independent offshoring decisions in each country, this paper

4By leveraging tariff variations from the recent trade war, this paper contributes to the expanding lit-
erature on its effects, including works such as Amiti, Redding and Weinstein (2020), Flaaen, Hortaçsu and
Tintelnot (2020), Monarch (2022), and Handley, Kamal and Monarch (Forthcoming).
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joins the literature on large interdependent discrete choice problems. Three main approaches
have been employed to handle models with this problem. The first uses the Euler method or
moment inequalities to estimate parameters without fully solving the model (Holmes, 2011;
Aguirregabiria and Magesan, 2013, 2016; Morales, Sheu and Zahler, 2019; Hsiao, 2021). The
second combines value function approximation with restrictions on the decision-making pro-
cess to manage large state and action spaces (Sweeting, 2013; Aguirregabiria and Vicentini,
2016). Most closely related to my work is the third approach that leverages complementar-
ities and lattice theory. Jia (2008) pioneered this approach in studying the expansion game
between two chain stores. Arkolakis, Eckert and Shi (2021) formalize a general solution
method for combinatorial discrete choice problems with either supermodularity or submod-
ularity. However, these models are static and do not face the large state space challenge
inherent in dynamic models. My solution method builds primarily on the novel work by
Alfaro-Ureña, Castro-Vincenzi, Fanelli and Morales (2023), who propose the first algorithm
to solve dynamic combinatorial discrete choice problems with supermodularity.

The rest of the paper is organized as follows: Section II describes the data sources and
presents descriptive facts. Section III outlines two empirical identification strategies and
discusses the causal evidence. Section IV provides the details of the model and proves its
supermodularity property. Section V describes the solution algorithm, estimation procedure,
and results. Section VI presents the counterfactual exercises. Section VII concludes.

II Data and Descriptive Facts
I introduce data sources, descriptive patterns, and two stylized facts in this section.

II.A Data Sources

Firm-level data on R&D investment in each foreign country is scarce. To overcome this
challenge, I use administrative records from the U.S. Census Bureau, specifically exploring
a previously underutilized survey module from the Business Research and Development and
Innovation Survey (BRDIS).5 This module, with its questionnaire snapshotted in Appendix
Figure A3, gathers information on firms’ annual R&D expenditure and provides a detailed
breakdown of that expenditure by foreign country.6 This measure of R&D expenditure

5The BRDIS is an annual survey conducted by the Census Bureau and sponsored by the National Science
Foundation and the National Center for Science and Engineering Statistics. It employs a representative
sample of for-profit, nonfarm firms in the United States. The survey focuses on firms with five or more paid
employees and at least one establishment (see Foster, Grim and Zolas, 2020, for more details).

6In this survey module, 40 countries and regions are individually included. Additionally, there is a
category labeled “others,” which encompasses countries grouped together due to their relatively smaller
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captures both direct costs, such as researchers’ salaries, and administrative and overhead
costs clearly associated with the company’s R&D activities. It includes expenditures for
both basic and applied R&D, as well as for both product and process innovation. It excludes
spending on capital inputs, routine product testing and quality control, and market research.

I use several restricted-use micro datasets from the Census Bureau to obtain information
on trade transactions and other firm characteristics for the manufacturing sector. In par-
ticular, I access import transactions at U.S. customs through the Longitudinal Firm Trade
Transactions Database (LFTTD). This database furnishes a detailed record for each custom
transaction, including a firm identifier, product categories based on the 10-digit Harmonized
System (HS10) code, value and quantity of goods, origin and destination countries, duties
collected for imports, and whether the transaction occurs at arm’s length or with related
parties.7 With this dataset, I generate a measure of firm imports by country and calculate
firm-country-year specific tariff rates based on which products the firm imports. Further-
more, I draw on the Census of Manufacturing (CMF) and the Annual Survey of Manufactures
(ASM) for data on firms’ industry classification, employment, shipments, materials, and en-
ergy usage.8 Additional country-level data on human capital index and capital services are
obtained from the Penn World Tables.

There are three data caveats. Due to the lack of information on the operations of foreign
affiliates—except for their trade with U.S. plants—I resort to using a firm’s imports from
a specific country as a proxy for its offshore production in that country. Although imports
represent only approximately half of offshore production,9 there is a strong correlation be-
tween the trends of imports and offshore production, both in terms of absolute value and
growth rate (Figure 2). This suggests that the proxy strategy provides accurate insights,
particularly when relative variations are used in regression analyses. Alternatively, I can
proxy within-firm offshore production using only related-party imports. The reduced-form
results remain robust to this alternative measure.

The sales recorded in the CMF and ASM capture shipments from all U.S. plants but miss

contributions, together representing less than 5% of the total foreign R&D expenses.
7Exporting parties are defined to be related when they own 10 percent or more of the other party. For

imports, 19 CFR §152.102(g) defines related persons as (i) members of the same family, (ii) shared officers
or directors, (iii) partners, (iv) employers and employees, and (v) a party having a 5% controlling interest
in the other. A similar definition of multinationals is used in Bernard and Fort (2015), Antras, Fort and
Tintelnot (2017), and Boehm, Flaaen and Pandalai-Nayar (2020).

8The CMF is conducted in years ending in 2 and 7, covering the entire population of manufacturing
establishments. The ASM is conducted annually, excluding years ending in 2 or 7, and covers a representative
sample of manufacturing establishments with at least one paid employee. Appendix A provides more details
on how I use the raw data to construct the firm-level variables necessary for production function estimation.

9In 2019, the total import value of U.S. multinational firms was $2.5 trillion, while the total value
of offshore production was $5.3 trillion. Thus, imports amounted to about 47 percent of the total offshore
production in that year. These numbers are calculated based on data from the Bureau of Economic Analysis.
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shipments from foreign affiliates to local foreign customers if they are not rerouted through
the U.S. These direct sales from foreign affiliates account for about 30% of the firm’s global
sales (Antràs, Fadeev, Fort and Tintelnot, 2023). In light of this, I focus on the colocation
of production for products shipped back to the U.S. and innovation activities serving the
U.S. parent. Appendix B details how my empirical strategies identify this specific form of
colocation. I leave the interesting topic of the colocation between local production and local
customization-driven innovation for future research.10

Finally, an important distinction between the Census data I use and the alternative data
on U.S. multinational firms from the Bureau of Economic Analysis is that the latter restricts
its sample to only multinationals, whereas my sample also includes many domestic firms.
This allows me to study the extensive-margin decision of when a domestic firm chooses to
become multinational by establishing its first foreign affiliate. The Census data also enables
me to distinguish between imports from related parties and those at arm’s length,11 which
differentiates outsourcing from within-firm offshoring. I use the sum of the two as my main
measure. However, the reduced-form results are robust when focusing solely on related-party
imports, and I found suggestive evidence that within-firm offshore production is associated
with greater colocation benefits with innovation compared to outsourced production.

II.B Descriptive Patterns

The final data sample comprises about 36,000 manufacturing firms covering the period from
2008 to 2019. Although the panel is unbalanced, large firms, which account for a substantial
share of total sales, are surveyed nearly every year (Appendix Table A2). The sample is not
fully representative of the entire population of U.S. manufacturing firms and is biased towards
larger firms, covering approximately 65% of total annual manufacturing shipments. Table 1
presents summary statistics. The average firm has an annual sales of $500 million. Among
firms investing in R&D, offshore innovation accounts for 23% of total R&D expenditure.

It is important to consider firms’ choices of multiple locations, rather than assuming
a single location, when studying their offshoring of production and innovation offshoring.
Firms conducting R&D in just one foreign country represent a mere 2.4% of total offshore
R&D. Similarly, those importing from only one origin country account for just 0.1% of the

10This source of colocation is more closely associated with horizontal and platform FDIs, whereas the
data and model in my paper are better suited for analyzing vertical FDI. Anecdotally, many multinationals
firms establish foreign R&D labs near their factories to customize products for local consumer preferences
(Håkanson and Nobel, 1993; Krishna, Patra and Bhattacharya, 2012). Therefore, I hypothesize a strong
incentive for colocation in the context of horizontal and platform FDIs.

11According to Lakatos and Ohnsorge (2017), a substantial 57% of total U.S. trade occurs at arm’s-length
between unrelated firms. Specifically, arm’s-length trade constitutes 50% of U.S. imports and 70% of exports.
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overall import value. In contrast, although firms conducting R&D in more than five foreign
countries make up only 3% of the observations, they contribute to 36% of total sales, 70%
of worldwide R&D, and 87% of the total offshore R&D (Appendix Table A3). Additionally,
firms importing from over ten countries capture 95% of the total import value.

I now present two descriptive patterns that suggest a positive linkage between offshore
production and innovation at both the aggregate and micro levels. Table 2 lists the top five
destinations for offshore production and innovation for U.S. firms. Germany stands out as
the largest destination for offshore R&D, accounting for 15% of U.S. firms’ foreign R&D
expenditure. Mexico is the largest origin country for imports, representing 20% of the total
import value. Notably, Germany, China, and Canada appear on both lists. When examining
the complete global distributions of U.S. imports and offshore R&D across all countries, I
find they have similar geographical patterns, indicating that major destinations for offshore
innovation also serve as major destinations for offshore production (Figure 3). This reveals
a positive correlation between offshore production and innovation at the aggregate level.

The same holds true at the micro level. Table 3 groups firm-country-year observations
into four categories based on whether they are associated with positive R&D and import
values. Strikingly, 94% of foreign R&D is conducted in countries from which the firm im-
ports.12 This suggests that the return on offshoring only R&D without production may be
minimal, whereas offshoring both activities can yield substantial benefits.

II.C Firm-Level Facts on Offshoring Activities

To better establish the micro-level linkage between offshore production and innovation, I
present two facts based on firm-country level regressions, which suggest a correlation between
these activities both within a host country and across countries within the same region. The
regressions control for firm and country-industry fixed effects, ruling out the confounding
factors that larger firms are more likely to offshore both production and innovation, as well
as that certain destination countries may be more attractive for both activities in a given
industry. Instead, the observed positive correlation is driven by variation across different
affiliates within the same firm, as well as variation across affiliates of different firms within
the same destination country and industry.
Fact 1. (Within-Country Colocation) Firms engage in more offshore R&D activities in
countries from which they import more, and vice versa.
Fact 2. (Cross-Country Interdependence) Production and R&D offshoring decisions are

12This significant proportion of foreign R&D accompanied by offshore production remains consistent across
various minimum cutoffs (instead of zeros) used to define offshoring modes.
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interdependent across countries: firms engage in more offshore R&D activities in a host
country if they import more from other countries within the region, and vice versa.
The regressions that establish these facts analyze the relationship between R&D and imports
in a cross-sectional sample from the year 2017, regressing each variable on the other:

yil = β1 · xil + β2 · xiR + γi + γjl + εil. (1)

xiR represents the total value of the independent variable for firm i in the region R surround-
ing country l, excluding country l itself. To illustrate with an example, if we consider l as
China and use x and y to represent imports and R&D, respectively, the regression investi-
gates whether there is a correlation between firm i’s R&D activities in China and its imports
from China, as well as its imports from other East Asian countries. Furthermore, the firm
and country-industry fixed effects are denoted by γi and γjl.

The regression results are reported in Table 4. Various combinations of the extensive
and intensive margins of imports and R&D are considered across different columns. Panel A
regresses R&D on imports, while Panel B does the opposite. In both panels, the coefficient
estimate β̂1 is significant and positive, indicating that a firm is more likely to have R&D
activities in countries where it has more production, and vice versa. Specifically, β1 is
estimated to be 0.0195 in Column (1) of Panel A, implying that the probability of a firm
conducting R&D in a host country increases by 1.95 percentage points if the firm also engages
in production there. Given that the baseline probability of conducting R&D in a host country
is only 1.3 percentage points, the presence of production more than doubles the likelihood
of conducting R&D in the same host country.13

Another observation is the robust and positive estimate of β2, which establishes the
second fact. A firm’s offshore innovation in a particular host country is positively correlated
not only with its offshore production in that same country but also with its production in
other neighboring countries within the region. Specifically, after controlling for whether the
firm engages in production in the focal host country, the probability of conducting R&D
in the focal host country increases by 0.15 percentage points if the firm also produces in
neighboring countries. This represents a 12% increase in the probability of offshoring R&D
relative to its baseline level. This second fact implies that firms’ offshoring decisions for
production and innovation in different countries are interconnected.
Industry Heterogeneity. The intensity of colocation can vary across industries, depend-
ing on the complexity of the product and process and the degree of knowledge spillover

13 The estimate of β1 remains robust without the regional terms, as shown in Table A4, which reports
regressions with only xilt. The estimates for both β1 and β2 are robust to a panel version of the regression
with firm-year and country-industry-year fixed effects (Appendix Table A5). Furthermore, when separating
related-party imports from arm’s length imports in this regression, the coefficient for the former is signifi-
cantly larger (Appendix Table A6).
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from engineering to innovation (Ketokivi, 2006). While causal analysis is limited by sample
size and cannot fully explore industry heterogeneity, I provide suggestive evidence based on
correlations between production and innovation. When splitting the sample by industry, I
find that coefficient estimates vary significantly across industries, and this variation remains
substantial even when comparing 6-digit NAICS industries within the same 3-digit indus-
try category (Appendix Figure A4). Although exploring how the magnitude of colocation
benefits changes with different types of manufacturing activities is beyond the scope of this
paper, it presents an interesting avenue for future research.

III Evidence: Colocation and Interdependencies
The two facts highlight positive correlations between offshore production and innovation
within countries and across countries within regions. These correlations may be attributed to
a fundamental linkage between production and innovation, as well as to unobserved affiliate
traits, such as management skills, and correlation in country characteristics. To disentangle
the former, I now introduce two identification strategies. The first strategy leverages a firm-
country-year specific tariff rate, constructed in a shift-share style based on the firm’s import
product bundle, as an instrument for production offshoring. The second strategy exploits
origin-product level tariff line changes that occurred during the Trump Tariffs policy as
plausible exogenous shifters of offshore production.

III.A Shift-Share Style Tariff Rate—IV Strategy

Firms import different products from different countries. The firm-country-specific import
product bundle combined with country-product-specific tariff lines implies that firms face
different tariff rates in each country. I design a firm-country-year level tariff rate Tilt to
reflect the effective tariff rate firm i would face in country l if it had continued to import the
same bundle of products from a fixed prior period t0:

Tilt =
∑
g

sigt0Tglt.

This is a weighted average of product-country-level tariff rates Tglt, with the weights being
the firm’s initial import value shares across products (sigt0) from all origin countries during
the prior time period.14 Products g are defined at the 10-digit HS code level. I use the initial
five years of my sample, spanning from 2008 to 2012, to compute sigt0 . The subsequent years
from 2013 to 2019 constitute the study period.

14Tglt is calculated by averaging transaction-level import data from the LFTTD.
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The validity of using Tilt as an instrument for firm i’s offshore production in country l in
year t rests on the assumption that the import tariff affects the firm’s cost of shipping goods
across borders, thereby influencing production offshoring. However, the tariff should not
affect the firm’s foreign R&D expenditures, unless there is an interaction between production
and innovation. By holding the import product bundle constant across countries and time
periods, I exclude variations in Tilt that stem from the endogenous selection of import bundle
across countries and its potential adjustment over time in response to tariff changes.

Another useful variable to construct is the average tariff rate within the region, excluding
the host country itself. This variable, TiRt, will serve as the instrument for the firm’s offshore
production to the surrounding region and is calculated as follows:

TiR(l)t =
1∑

l′ ̸=l cll′Ml′

∑
l′ ̸=l

cll′Ml′Til′t, (2)

where cll′ is a dummy variable that equals one if countries l and l′ are in the same region, and
Ml′ is the aggregate import value from country l′ over all sample years. For instance, when
l represents China, Tilt represents firm i’s average tariff rate in China, while TiRt represents
its (weighted) average tariff rate in other East Asian countries excluding China.

I estimate a reduced-form specification, regressing offshore production and innovation on
the instrument to examine how these offshoring activities respond to tariffs:

yilt = β1 · Tilt + γit + γlt + νilt. (3)

I also estimate a two-stage least squares (2SLS) specification. In the first stage, I regress
imports on the tariff rate, and in the second stage, I regress R&D on the predicted imports:

R&Dilt = β · Împilt + γit + γlt + εilt,

Impilt = κ · Tilt + γit + γlt + νilt, (4)

Both specifications include firm-year and country-year fixed effects.

III.B Trump Tariffs as a Quasi-Experiment

In an effort to tackle the trade deficit, the U.S. implemented a series of tariff increases
on specific goods and countries in 2018 and 2019.15 Consequently, major trading partners
of the U.S. retaliated with their own tariffs, escalating trade tensions. As estimated by
Fajgelbaum, Goldberg, Kennedy and Khandelwal (2020), these U.S. tariff changes led to an
overall increase in the average tariff rate from 2.6% to 16.6% for a total of 12,043 goods.
These goods accounted for about $303 billion (12.7%) of the annual imports into the U.S.

15Refer to Fajgelbaum, Goldberg, Kennedy and Khandelwal (2020); Fajgelbaum, Goldberg, Kennedy,
Khandelwal and Taglioni (2022) for information on various stages of Trump tariffs until 2019, and Bown
(2020) for an up-to-date chart of US-China Trade War tariffs.
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The Trump Tariffs provide a compelling quasi-experiment to study the effect of offshore
production on offshore innovation. The unexpected tariff shocks at the country-product level
are plausibly uncorrelated with affiliate-specific unobservables, such as management skill,
that influence the growth rate of R&D. To leverage this quasi-experiment, I first obtain data
on tariff line changes by 10-digit HS code and country, compiled by Fajgelbaum, Goldberg,
Kennedy and Khandelwal (2020); Fajgelbaum, Goldberg, Kennedy, Khandelwal and Taglioni
(2022) from U.S. International Trade Commission schedules. In total, the tariff increases
affected 116 countries, with approximately 26 thousand tariff lines targeting Chinese goods
and 19 thousand tariff lines targeting goods from other countries (see Figure 4 for the log
number of affected goods and the average effective tariff increase among affected goods by
country).16 While China had the highest number of affected products, its effective tariff
increase on those goods did not rank among the highest.

To assign firm-country pairs to the treatment and control groups, I use data from the
LFTTD to compile a list of goods that firm i imported from country l during the five-year
period preceding the Trump Tariffs. If any of these imported goods were affected by tariff
changes in 2018 and 2019, the firm-country pair is designated as treated. Conversely, if none
of the goods were impacted, the pair is classified as untreated. For robustness checks, I also
explore alternative measures of treatment intensity, such as the fraction and value share of
affected products and the effective amount of tariff rate increases on affected goods. It is
worth noting that the event study sample is limited to firm-country pairs where the firm had
imported from the country during the prior period.

I estimate an event study specification as follows:

yilt =
∑

t=2014:2019

βt · Treatil × Yeart + γil + γlt + zit + εilt, (5)

where zit is a control vector that includes firm sales and employment to account for the scale
effect. I also estimate a difference-in-differences specification:

yilt = β · Treatil × Postt + γil + γlt + zit + εilt, (6)

which focuses on comparing baseline and endline outcomes, with Post set to one in 2019 and
zero between 2014 and 2017.17 Both specifications include firm-country and country-year
fixed effects, with standard errors clustered at the firm level.

Section 301 Investigation. In March 2018, the U.S. government concluded a Section
301 investigation, asserting that China was engaging in forced technology transfers and

16A tariff line is defined as a combination of a country, a ten-digit HS code, and a year.
17Excluding 2018 ensures a clean comparison between baseline and endline outcomes. This choice is

motivated by the fact that R&D decisions typically take time to respond to shocks, and it avoids the
complications from intermediate stages of tariff increases.
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intellectual property theft. This led to multiple rounds of tariffs on Chinese goods starting
in July 2018, under the broader Trump Tariffs policy. Given the legal basis for these tariffs,
they were likely imposed disproportionately on more innovation-intensive goods. A potential
concern is that this selective application could bias the treatment effect by introducing a
correlation between the treatment dummy and unobserved affiliate characteristics.

However, two arguments suggest that this issue may not be particularly concerning.
First, the inclusion of firm-country fixed effects means that the event study relies on the
parallel trend assumption that the growth rates of R&D for products with high versus low
initial R&D intensity would have been the same in the absence of the Trump tariffs. This
assumption is supported by Appendix Table A7, which shows no statistically significant
difference in R&D growth rates between the treated and control groups prior to the tariff
policy. Second, even if the U.S. deliberately targeted industries with rapid innovation growth,
such as semiconductor, the direction of the bias in the treatment effect would likely be
towards zero, meaning I would be estimating a lower bound of the actual effect.

III.C Comparison of Two Strategies

The sample size for the event study on the Trump Tariffs is limited to 0.2 million firm-
country-year observations, as the treatment dummy is defined only for firms that imported
from the country in the prior period. In contrast, the instrumental strategy is not subject
to these restrictions and includes a much larger sample of 1.5 million observations.

Despite the larger sample size, two potential validity concerns arise for the instrumental
strategy. Firms may anticipate tariff changes years in advance and respond endogenously by
adjusting their investments. Additionally, tariff schedule changes—especially those from Free
Trade Agreements—might include Intellectual Property (IP) provisions that directly affect
innovation incentives (Santacreu, 2021). However, the latter concern is mitigated by the
absence of new trade agreements or major revisions to existing U.S. trade agreements during
the study period. Moreover, this issue would only threaten the validity of the instrument
if the confounding IP factor varies at the product level, as the instrument is constructed
using product-level tariff variations and the regressions control for country-year fixed effects
that account for any country-level IP term changes. These concerns are less relevant for the
Trump Tariffs event study strategy, where tariff changes at the country-product level were
unexpected and less linked to IP issues.

The event study strategy relies on tariff increases from the Trump Tariffs policy, while
the instrumental strategy leverages additional tariff variations dating back to 2013, mainly
from pre-established reduction schedules in U.S. Free Trade Agreements with countries like
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Chile, the Dominican Republic, Morocco, Peru, and Singapore. It would be reassuring if
both identification strategies, despite using different sources of variations, produce consistent
and robust estimates of the impact of production on innovation.

III.D Results

Evidence from the Instrumental Strategy

Table 5 reports estimates from the reduced-form specification in Panel A and the two-
stage least squares specification in Panel B. The main result is that higher tariffs lead to a
decrease in both offshore production and innovation in the host country, and that offshore
production positively affects offshore innovation. Columns (1) and (4) of Panel A reveal
that a 10 percentage points increase in the tariff rate (i.e., ∆Tilt = 0.1) is associated with a
19% decrease in imports and a 2.4% decrease in R&D expenditure within the host country.18

Column (3) of Panel B suggests that when firm i doubles its imports from country l, its R&D
expenditure in the same country increases by 12.5%.19 This positive effect of production on
innovation indicates the presence of colocation benefits between these two activities.

To further explore empirical evidence for cross-country interdependence in offshoring
activities, I pose the following question: Do import tariffs for neighboring countries within
the region also impact innovation offshored to the host country? To answer this question,
I extend the previous reduced-form regression in Equation (3) by introducing an additional
independent variable, TiRt, which is the regional average tariff rate constructed in Subsection
III.A. To illustrate this generalized regression, consider China as the focal host country; the
regression then investigates whether offshored activities in China are influenced not only by
the tariff rate that firm i faces in China (Tilt) but also by the tariff rate in the broader East
Asian region excluding China (TiRt).

Panel C of Table 5 presents estimates from the generalized regression. The average leave-
one-out regional tariff also negatively affects a firm’s offshored production and innovation
within the host country. The estimated effect of the host country’s tariff rate remains robust,
and the estimated coefficient for the regional tariff rate is significant and negative. These
results collectively indicate that offshored production and innovation are adversely affected
not only by tariff shocks in the host country but also by those in other countries within
the host region. The findings that these offshoring decisions in one country are influenced
by exogenous shocks occurring in other countries provide compelling causal evidence for

18The coefficient estimates for imports correspond to a trade elasticity between 1.98 and 2.93, which falls
within the plausible range of estimates found in the literature.

19The first-stage F statistic is above 60.
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cross-country interdependence in production and innovation offshoring.

Evidence from the Trump Tariffs Quasi-Experiment

As introduced in Section III.B, the Trump Tariffs provide exogenous country-product level
tariff shocks that affect production offshoring without directly influencing innovation off-
shoring. Therefore, if offshore innovation also responds to these tariff changes, it serves as
evidence for the intermediary causal effect of production on innovation.

Figure 5 presents estimates from Equation (5). The tariff increases adversely affect both
offshore production and innovation in the host country. Treated units experience a 9.8%
decrease in imports and a 1.4 percentage point decrease in the probability of conducting
R&D. Among firms that continue performing R&D in the host country, the amount of R&D
expenditure decreases by 15.4%. Consistent with these results, Table 6 reports difference-in-
differences estimates, showing robust negative treatment effects. The second to fourth rows
confirm this finding using alternative continuous measures of treatment intensity.

Robustness

Given that China has been the primary target of U.S. manufacturing reshoring policies,
one might wonder whether U.S. firms’ offshoring decisions to China significantly drive the
observed reduced-form results. Similarly, the semiconductor industry has been a key focus
in policy discussions surrounding the revival of U.S. manufacturing. However, despite their
policy relevance, when I repeat the event study on the Trump Tariffs and exclude China
and the semiconductor industry from the sample individually, I find that neither is the main
driver of the observed patterns of colocation and interdependencies. Appendix Figures A5
and A6 show that the estimated effects remain highly robust.

My measure of R&D expenditure captures all innovation activities performed by the firm
but does not include potential outsourced R&D, such as those contracted to external orga-
nizations. Therefore, it is useful to check the robustness of the causal effects when imports
are also restricted to within-firm imports. To do this, I repeat both the instrumental and
event study strategies, focusing exclusively on related-party imports. For the instrumental
strategy, I calculate the effective tariff rate the firm faces in each country based solely on
the goods it imports from related parties and use it to instrument for related-party imports
in examining its effect on R&D. The coefficient estimates, reported in Appendix Table A8,
are similar to those in Panel B of Table 5. For the event study strategy, I define a firm-
country pair as treated if any products the firm previously imported from related parties
in that country were subject to the tariff increase. Reassuringly, within-firm imports drop
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significantly after treatment, while arm’s length imports do not. The estimated responses in
R&D remain robust (see Appendix Figure A7).

I focus on the colocation between offshore production and innovation that serve U.S.
plants, due to data limitations. Import serve as a good proxy for the production of goods
shipped back to the U.S. However, R&D expenditure may include a potential measurement
error from local innovation efforts, such as product customization for heterogeneous con-
sumer preferences. I address this issue by leveraging the idea that while U.S. import tariffs
affect production and innovation for products destined for the U.S., they arguably do not in-
fluence incentives for local production and innovation, as the locally produced and innovated
products are typically sold directly to the host or neighboring countries (see Appendix B for
a thorough explanation). Thus, the reduced-form analyses are immune to this measurement
error since tariff shocks isolate variations relevant to activities serving U.S. plants.

Discussion. The analyses in Section III provide evidence on the extent of colocation and
cross-country interdependence, showing that a firm’s offshore innovation in a host country is
positively affected not only by its offshore production in that country but also by production
in neighboring countries within the same region. However, estimating the mechanisms driv-
ing colocation and interdependence, as well as analyzing their policy implications, requires
a quantitative framework, which I develop in the next section.

IV A Model of Dynamic Offshoring Location Choice
This section presents a dynamic partial-equilibrium framework that characterizes firms’ joint
decisions on offshoring production and innovation locations. The primary goal is to incor-
porate two key empirical features: colocation benefits and cross-country interdependencies.

In the model, firms import parts from foreign countries, either manufactured by their
foreign affiliates or external suppliers. These imported goods, combined with domestically
produced goods, are aggregated using a CES function to form the firm’s intermediates, which
are then used to produce the final product sold to the global market.

Firms solve an infinite-horizon combinatorial discrete choice problem, selecting location
bundles for production and innovation in each period. They face sunk and fixed costs of off-
shoring, with the fixed cost of offshore innovation affected by whether the firm has production
in the region. The production location bundle determines the price index of intermediates, re-
flecting countries’ relative cost advantages. This, along with the innovation location bundle,
influences the firm’s future productivity. Firms take into account cross-country interdepen-
dencies, recognizing how decisions in one country can affect optimal choices elsewhere.

My model highlights three mechanisms that generate colocation benefits. First, it ac-
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counts for spillovers from local production to innovation, allowing for a higher return on
innovation when paired with production in the host country. Second, it enables production
and innovation to share overhead costs, reducing the fixed cost of innovation when production
exists in the surrounding region. Third, an additional complementarity between production
and innovation arises from a scale effect: conducting R&D in a host country increases pro-
ductivity and firm size, leading to a greater payoff for producing in that country.20

My model also introduces three sources of cross-country interdependencies. First, im-
ported goods from different countries substitute for each other in the cost function, reflecting
the firm’s flexibility in choosing among production locations based on relative costs. Second,
production and innovation in different countries are complementary due to firm-level scale
effect. For example, adding a new production location lowers intermediate costs, increasing
demand and raising payoffs for producing and innovating in other locations. Third, I in-
corporate a region-specific force that allows for reduced innovation costs in a host country
when the firm produces in neighboring countries. These interdependencies enable the model
to capture third-country effects of bilateral trade policies, setting it apart from models that
have traditionally assumed independence across countries for technical simplicity.

IV.A Static Demand and Production

Each firm is denoted by i, location (or country, interchangeably) by l, industry by j, and
time period by t.
Market Demand. The final goods market is monopolistically competitive. The demand
for firm i is given by

qit = Qjt ·
(
pit
Pjt

)−η

= Φjt · (pit)−η,

where η is the elasticity of substitution between products offered by different firms, and Φjt

captures the market conditions for the industry in which firm i operates.
Production. The short-run unit production cost is independent of output levels and is
specified as a function of cost shifters (Berry, Levinsohn and Pakes, 1995; Aw, Roberts and
Xu, 2011; Piveteau, 2021):

ln cit = β0 + βk · ln kit + βw · lnwjt + βm · ln pmit − ωit.

The log of marginal cost depends on the firm’s exogenous capital stock (kit), the wage
rate in the industry (wjt), the price index of intermediate goods (pmit ), and the unobserved
Hicks neutral productivity (ωit). Both the intermediate price index and productivity are
endogenously affected by the firm’s choice of production and innovation locations.

20This scale effect works through the firm’s productivity and the import price index, thereby generating
consistent impacts across all affiliates within the firm rather than being specific to one location.
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The firm’s profit optimization under this demand structure and marginal cost function
implies the following revenue function:

lnRit = (1− η) ln

(
η

η − 1

)
+ lnΦjt + (1− η) (β0 + βk ln kit + βw lnwjt + βm ln pmit − ωit) .

The firm’s profit, πit, is proportional to its revenue, Rit„ with a constant markup equal to
η/(η − 1). That is,

πit =
1

η
·Rit (ωit, ki, wjt, p

m
it ,Φjt) .

Foreign Production. Given the observed data pattern that all firms in my sample purchase
domestic materials, I assume that they always produce or source intermediates in the home
country. In the static problem, the firm takes the set of production locations as given
and decides how to allocate production across these locations. Intermediates from different
locations are aggregated using a CES structure.

mit =

(∑
l∈L

yilt ·m
ρ−1
ρ

ilt

) ρ
ρ−1

,

where yilt is a dummy variable that equals one if firm i produces in country l in period t,
and ρ is the elasticity of substitution between goods from different countries.

The unit cost of goods from a specific location, pm,ilt, is determined by the host country’s
wage level (wlt), the shipping cost between the U.S. and the host country (τlt), and the U.S.
import tariff rate for the host country (Tlt). Specifically, pm,ilt = wltτlt(1 + Tlt). The CES
structure implies that the price index for the aggregated intermediates is given by

pmit =

(∑
l∈L

yilt [wltτlt(1 + Tlt)]
1−ρ

) 1
1−ρ

.

It varies with the set of production locations and the unit cost of goods at each location.21

I define θlt = [wltτlt(1 + Tlt)]
1−ρ as country l’s “production-offshoring potential” in period

t, as it represents the country’s average cost advantage in manufactured goods. I also define
Θit = (pmit )

1−ρ as firm i’s “production-offshoring capability” in period t, which captures the
firm’s ability to produce more cheaply when it has established more production locations.

IV.B Dynamic Location Choices

Firms’ offshoring location choices incur dynamic costs and affect future productivity.
Innovation Effort and Productivity Evolution. A firm’s productivity is governed by
a Markov process that depends on its past productivity, an i.i.d. shock, and its production

21This CES aggregation of intermediates can be microfounded by considering a continuum of goods varieties
and assuming a Fréchet distribution of production efficiencies across countries (Antras, Fort and Tintelnot,
2017). The equivalence of these two approaches is demonstrated in Appendix C.1.
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and innovation at each location:

ωit = α0 + α1ωit−1 +
∑
l

[
1 +X ′

lt−1µ
]
· [β1rilt−1 + β2yilt−1rilt−1 + β3yilt−1] + ξit, (7)

where rilt is a dummy indicating whether the firm conducts R&D in country l at time t, and
yilt indicates whether the firm produces in country l at time t. β1 captures the stand-alone
return on R&D, while β2 captures the additional return from the synergy effect, where local
production enhances innovation efficiency. β3 accounts for the learning-by-doing effect. The
effective return on R&D varies by country and depends on specific country characteristics
included in the vector Xlt. The innovation shock, ξit, follows a normal distribution with
mean zero and variance σ2

ξ , capturing the randomness in innovation.
Sunk and Fixed Costs. Firms incur sunk costs ϕp

s for production and ϕr
s for innovation

when they begin offshoring these activities to a foreign country for the first time. If they
have previously engaged in such offshoring, they instead pay fixed costs: ϕp

f for production
and ϕr

f,ilt for innovation. The fixed cost for innovating in country l can be reduced if the
firm has production within the region:

ϕr
f,ilt = ϕr

f − λ1 max
l′

{cll′yil′t}.

cll′ is a dummy variable that indicates whether countries l and l′ are in the same region. The
degree of the cost reduction is determined by the parameter λ1.
Timing Assumption. (1) At the beginning of period t, the firm observes its state vec-
tor, which includes the location bundles for production and innovation from the previous
period, the current-period productivity, and other exogenous demand and cost shifters:
sit = ({yilt−1}l , {rilt−1}l , ωit; kit,Φjt) . The value function Vit(sit) is defined at this stage.
(2) Productivity shocks are realized, and the firm chooses the quantities of labor, interme-
diate inputs, and energy consumption. (3) The firm is aware of the fixed and sunk costs
associated with each offshoring choice and selects its optimal location bundles yit and rit.
(4) Static profits πit(yit, ωit) are realized, and dynamic offshoring costs are paid. (5) The
new state is formed at the end of this period: sit+1 = (yit; rit;ωit+1|ωit,yit, rit; kit+1,Φjt+1) .

Dynamic Problem. The firm’s dynamic programming problem is characterized by the
following Bellman equation:

Vit (sit) = max
yit,rit

{
πit(yit, ωit)−

∑
l

yilt
[
(1− yilt−1) · ϕp

s + yilt−1 · ϕp
f

]
−
∑
l

rilt
[
(1− rilt−1) · ϕr

s + rilt−1 · ϕr
f,ilt (yit)

]
+ ζEξVit+1 (sit+1|ωit,yit, rit)

}
. (8)

The firm’s objective is to maximize the present value, which depends on current-period profit,
dynamic offshoring costs, and the discounted expected value of future periods. Regarding the
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state transition rule, next period’s productivity ωit+1 is determined by the current-period
productivity ωit and the firm’s location choices (yit, rit). The optimal choices of location
bundles, (yit, rit), also directly serve as components of the new states.

IV.C Supermodularity Property

The dynamic programming problem characterized by the Bellman Equation (8) is NP-hard,
with prohibitively large state and action spaces covering all possible country combinations.
To tackle this computational challenge, I first derive a condition under which the comple-
mentarities in the model dominate the substitutabilities, ensuring that the firm’s lifetime
objective function is supermodular. This condition holds empirically given the estimates
of static parameters. Since maximizing a supermodular function is feasible in polynomial
time, I can then adapt a cutting-edge algorithm to effectively solve this otherwise unsolvable
dynamic location choice problem.

To introduce the supermodularity property, let us reframe the recursive dynamic pro-
gramming problem as a lifetime planning problem. Defining Πt as the variable profit net of
fixed and sunk costs, the firm’s expected lifetime payoff can be expressed as

Π0 (oi|yi,−1, ri,−1, ωi,−1) = Ez

∞∑
t=0

ζtΠt

(
ωit

(
zt, {oiτ (z

τ )}t−1
τ=0

)
,oit

(
zt
)
,oit−1

(
zt−1

))
,

where zt = (ξ1, ξ2, . . . , ξt) represents the history of productivity shocks up to period t and
z = {ξt}∞t=0 represents the full history. Define Ω as the space of all possible shock histories,
L as the set of locations, and T as the set of time periods. The firm’s production offshoring
decisions, yi, are represented as a point in {0, 1}LT Ω, specifying choices across locations
and periods for all possible shock histories. Similarly, ri represents innovation offshoring
decisions in the same space. Let oi = (yi, ri) compactly represent the firm’s full decision
rule. Without loss of generality, I consider a fixed initial state and occasionally omit notations
(yi,−1, ri,−1, ωi,−1). The firm’s problem is to select the optimal oi that maximizes Π0 (oi).

Next, I establish a proposition that the firm’s lifetime payoff function exhibits super-
modularity with respect to its decision rules under an empirically valid inequality condition.
This proposition ensures the effectiveness of the solution algorithm used later.

Proposition 1. Assume that sunk costs are greater than or equal to fixed costs, and that
β1, β2, β3 and λ1 are non-negative. If (η − 1)βm > ρ − 1, then Π0 (oi|yi,−1, ri,−1, ωi,−1) is
supermodular in oi on {0, 1}2LT Ω.

The proof of Proposition 1 is provided in Appendix C.3. Mathematically, supermodu-
larity requires that if an item adds value to a decision set, it continues to add value in any
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subset of the original decision set. Intuitively, it corresponds to rich static and dynamic
complementarities in the model, which I now elaborate on.

Under the inequality condition, production offshoring decisions across locations, yilt and
yil′t, are complementary, meaning that production at one location increases the return from
production at other locations. This condition ensures that the static profit function is super-
modular in yilt and yil′t. A larger value of (η− 1)βm indicates a stronger revenue response to
a decrease in the marginal production cost (elasticity η) and a greater sensitivity of marginal
production cost to changes in intermediate prices (elasticity βm). The condition also re-
quires a small substitution effect between goods from different countries, characterized by
the elasticity of substitution ρ, similar to the condition in Antras, Fort and Tintelnot (2017).

The regularity conditions imply additional complementarities. Over time, yilt is comple-
mentary to yilt+1 if sunk costs are greater than or equal to fixed costs, as offshoring production
today lowers the cost of offshoring in future periods. Similarly, rilt complements rilt+1 for
the same reason. There is complementarity between yilt and rilt because local production
increases the return to innovation (β2) and decreases its cost (γ1). Lastly, complementarity
exists between yilt and ril′t because having a production plant in neighboring countries can
also reduce innovation cost (γ1). These complementarities together imply the supermodular
nature of the model, which is crucial for the solution algorithm.

V Solution Algorithm and Model Estimation
The lattice structure of the dynamic programming problem can be leveraged to form a
squeezing algorithm, whereby one starts from the highest and lowest points in the lattice
and gradually narrows down the range to reach the optimal solution. This section first
presents the solution algorithm adapted from Alfaro-Ureña, Castro-Vincenzi, Fanelli and
Morales (2023) and then discusses the estimation steps and results.

V.A Solution Algorithm

I begin by assuming that the model is non-stationary until a terminal period T , beyond which
all exogenous determinants of payoffs, such as market demand and countries’ production-
offshoring potentials, remain constant (as in Eaton, Kortum, Neiman and Romalis, 2016;
Caliendo, Dvorkin and Parro, 2019; Igami and Uetake, 2020; Alfaro-Ureña, Castro-Vincenzi,
Fanelli and Morales, 2023). This implies that the value and policy functions become station-
ary for t ≥ T . Let tI represent the initial sample period.

The first computational challenge in solving the Bellman Equation (8) is the large state
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space, especially when coupled with the non-stationarity of the model. Essentially, one needs
to solve 22LNωT distinct choice problems, and for each of these problems, there are 22L options
to evaluate. The idea to tackle this issue is to design the algorithm in such a way that we
only need to compute the policy function at selective states rather than at all possible states.
In particular, this is done only at states {y̌it, řit, ω̌it}tFtI that the firm would reach if it chooses
the optimal location bundles at each period and all exogenous determinants follow specific
paths of interest {ξ̌it, Φ̌jt}tFtI —e.g., observed or simulated paths. This approach significantly
reduces the number of problems that need to be solved.

The second insight of the solution algorithm is that solving the optimization problem at
a given state does not require full knowledge of the optimal choices in all states that may
be subsequently reached (Alfaro-Ureña, Castro-Vincenzi, Fanelli and Morales, 2023). For
instance, if a firm’s return to establishing an R&D lab in the current state is sufficiently
high, its optimal decision may be to do so regardless of what its optimal choices might be
at any other states. As a result, the algorithm is able to track only the upper and lower
bounds on the optimal choices, sparing the need to store the entire policy function. The last
idea in the solution algorithm is to break down a complex problem with a large choice set
into many simpler problems, by solving single-country problems each at a time while fixing
choices in other countries at their bounds (Jia, 2008; Arkolakis, Eckert and Shi, 2021).

The algorithm updates an upper and lower bound on the firm’s optimal choices along
specific paths of interest. If these bounds coincide, they must also coincide with the solution.
However, if they narrow but do not converge, additional refinement is needed to further
tighten the bounds. Now, consider a specific firm i and, without loss of generality, assume
it is born in period one.
Step 1. To initiate the algorithm, I set an initial constant upper bound as a vector of ones,
i.e. b̄

[0]
i = {ȳilt, r̄ilt}l,t = 12TL, so that b̄ilt ≥ oilt (yit−1, rit−1, ωit) for all (yit−1, rit−1, ωit). In

words, this is an upper bound on the firm’s optimal production and innovation choices in
each country l and period t ≥ 1, regardless of the path of productivity shocks and concurrent
decisions in other countries.
Step 2. I define single-country problems and solve them one at a time to derive an upper
bound policy function ō

[0]
i , where ō[0]ilt(yilt−1, rilt−1, ωit) ≥ oilt (yit−1, rit−1, ωit) for all yi(−l)t−1

and ri(−l)t−1. This upper bound policy function is distinct from the full policy function,
which is a mapping from the entire state space to the entire action space and requires
storage of a prohibitively large size. In contrast, the upper bound policy function pertains
to the problem for a specific country where actions in other countries are fixed at the initial
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constant bound.22 As a result, it bounds the firm’s optimal choices regardless of concurrent
decisions in other countries but remains dependent on the path of productivity shocks.

The single-country problem is solved by backward induction. For a specific country l, I
first consider its optimization in the final period T :

V̄ilT (yilT−1, rilT−1, ωiT ) = max
yilT∈{0,1},rilT∈{0,1}

{
πiT

(
ωiT , yiT |b̄[0]i,−l,T

)
− yilT

[
(1− yilT−1)ϕ

p
s + yilT−1ϕ

p
f

]
− rilT

[
(1− rilT−1)ϕ

r
s + rilT−1ϕ

r
f,ilT

(
yilT |b̄[0]i,−l,T

)]
+ ζEξV̄ilT

(
siT+1|yilT , rilT , ωiT , b̄

[0]
i,−l,T

)}
.

This is a simple optimization problem with a small state space and action space. I use
standard value function iterations to solve it and obtain V̄ilT and ōilT . Similarly, I solve the
same problem from period T − 1 to 1 and obtain {V̄ilt}T−1

t=1 and {ō[0]ilt}
T−1
t=1 .

I then repeatedly solve the single-country problem for countries 1 to L to get the entire
upper bound value function V̄i and the entire upper bound policy function ō

[0]
i . The super-

modularity property of the model guarantees that the upper bound policy function obtained
through this process is indeed an upper bound on the firm’s optimal choices.
Step 3. The next step is to update the constant upper bound using the obtained upper
bound policy function ō

[0]
i . This is achieved by evaluating the upper bound policy function

at the most favorable path of productivity shocks, i.e. when firm i receives the highest shock
in every period. This step gives us the highest choices among all possible histories:

b̄
[n]
it′ = ō

[n−1]
it′

(
b̄
[n]
it′−1, ωit

(
ωi0, ξ̄

))
, t′ = 1, . . . , T

with the initial condition equal to 02J and ωi0. In contrast to the firm-country level shocks
in Alfaro-Ureña, Castro-Vincenzi, Fanelli and Morales (2023), the unobserved shocks in my
model are at the firm level, so the updating procedure also operates at the firm level.
Step 4. I iterate over the previous steps until the constant upper bound converges, i.e. b̄[n]it =

b̄
[n−1]
it , ∀t ∈ [ti, T ], and denote the resulting upper bound policy function as ō∗i . Similarly, if

we start with an initial constant lower bound equal to b[0]i = 02TL, obtain the lower bound
policy function, and update the constant lower bound by evaluating the lower bound policy
function at the least favorable path of shocks, we obtain the converged lower-bound policy
function o∗i . Convergence in this step is always achieved because the constant upper (lower)
bound always decreases (increases) and there are only finitely many values it can take.
Step 5. The final step is to derive bounds on the firm’s optimal choices along the “path of
interest” using the converged upper and lower bound policy functions. The path of interest,

22For comparison, the upper bound policy function ō
[0]
i is a point in the {0, 1}2TL×4R space. The full policy

function, on the other hand, is a mapping from the state space {0, 1}2L × R to the action space {0, 1}2L in
every period, thereby existing in the {0, 1}2TL×4LR space.
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typically the simulated path of productivity shocks, is denoted as
{
ξ̌it
}
t
. The upper bound

¯̌yi (lower bound y̌
i
) consists of the decisions made by the firm if it receives the simulated

shocks and follows the upper bound policy function ō∗i (lower bound policy function o∗i ):
¯̌yit′ = ō∗it′

(
¯̌yit′−1, ξ̌it′

)
, y̌

it′
= o∗it′

(
y̌
it′−1

, ξ̌it′
)
, t′ = ti, . . . , t,

with initial condition equal to 02J and ωi0. If ¯̌yit and y̌
it

coincide for all sample periods, they
represent the firm’s optimal choices along the path of interest. However, they differ for at
least one period, additional refinement steps are needed to further tighten the bounds.
Refinement. I begin the refinement step with the period τ where the upper and lower
bounds on the firm’s optimal choices along the path of interest differ for the first time; that
is, τ = min{t ∈ [tI , T ] : ¯̌yit > y̌

it
}. Using the knowledge about the firm’s optimal choices

along the path of interest up to period τ − 1, I can refine the bounds at period τ by solving
for the same problem as in the main steps, but only for the truncated periods [τ, T ] with the
initial state (y̌iτ−1, řiτ−1, ω̌iτ−1). The idea behind this refinement step is that convergence is
easier to achieve when a shorter time period is involved and initial bounds are more accurate.

One difference in this refinement step compared to the main steps is how I initialize the
constant bounds. For the constant upper bound, instead of using a vector of ones, I evaluate
the converged upper bound policy function, ō∗it, at the state firm i reaches if it (1) starts
from (y̌iτ−1, řiτ−1, ω̌iτ−1) at period τ , (2) receives the highest shock for all t′ ∈ [τ, T ], and (3)
chooses location bundles according to ō∗it. The constant lower bound is initialized similarly.

Solving the truncated problem gives us upper and lower bounds on the firm’s optimal
choices at period τ along the path of interest, denoted by ¯̌yiτ |τ and y̌

iτ |τ . If these bounds
coincide, we obtain the optimal choice at τ . In this case, I proceed to the next τ ′ > τ

where the bounds differ and apply the refinement procedure again to tighten the bounds at
τ ′. Otherwise, I assume the firm follows the lower bound policy function. This assumption
has minimal impact on estimation results and counterfactuals, as more than 99% of the
individual problems are solved accurately.

It is worth reiterating that the supermodularity property is responsible for ensuring that b[n]i

(b[n]i ) is an upper (lower) bound on the firm’s optimal choice at any feasible history, changes
monotonically with each iteration n, and converges after a finite number of iterations. My
setting differs from that of Alfaro-Ureña, Castro-Vincenzi, Fanelli and Morales (2023) in
several ways: it incorporates two interrelated dynamic choices with rich complementarities,
allows for a more general context where the static profit function is supermodular but not
additively separable across countries, and permits the unobserved state to be endogenously
affected by choices. Nonetheless, the algorithm is effective as a result of Proposition 1.

25



V.B Estimation Steps and Results

I now turn to model estimation. Table 7 summarizes the parameters to be estimated and their
sources of identification. Further details on each parameter’s identification will be discussed
in the corresponding estimation steps. The estimation strategy follows three steps. First,
I estimate the countries’ production-offshoring potentials, θlt, firms’ production offshoring
capabilities, Θit, and the elasticity of substitution, ρ, based on firms’ production shares
across countries. I also estimate η using the average markup. Second, I apply the control
function approach to estimate the unit cost function and the productivity evolution process,
recovering parameters βk, βm, α0, α1,µ, β1, β2, and σξ. Finally, I use the method of simulated
moments (MSM) to estimate the fixed and sunk cost parameters: ϕp

s, ϕ
r
s, ϕ

p
f , ϕ

r
f , and λ1.

V.B.1 Step 1—Production-Offshoring Potentials

In this step, I take the firm’s production locations as given and focus on the variation in its
product value shares across countries. Given the CES aggregation of intermediates, firm i’s
value share of imported goods from country l in period t is given by

χilt =

(
wltτlt(1 + Tlt)

pmit

)1−ρ

=
θlt
Θit

,

which represents the contribution of the country’s production-offshoring potential to the
firm’s production-offshoring capability.

After taking logs of this equation and normalizing the foreign product shares by the firm’s
domestic product share (i.e. setting θ0t = 1 where location 0 represents the U.S.), I obtain
the following expression:

lnχilt − lnχi0t = ln θlt + ln ϵilt. (9)
A firm-country-year-level measurement error, ϵilt, is added to turn the model’s equilibrium
condition into an empirical specification. The left-hand side of Equation (9) is the difference
between a firm’s share of goods imported from country l and its share of goods made domes-
tically. I estimate Equation (9) via Ordinary Least Squares (OLS) and employ country-year
fixed effects to capture the ln θlt terms. A country’s production-offshoring potential is iden-
tified by how much firms import from that country relative to other countries.

I cross-validate the estimates of production-offshoring potentials, θ̂lt, by comparing them
to the number of firms importing from each country. Panel A of Figure 6 shows the overtime
correlation for China, and Panel B shows the cross-sectional correlation for all countries in
2017. Both graphs indicate that a host country’s production-offshoring potential is highly
correlated with the number of U.S. firms importing from that country. In 2017, China had
the highest production-offshoring potential, largely due to its competitive production cost.
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Canada was a close second, likely benefiting from its low trade costs with the U.S.
Using the estimated production-offshoring potentials, θ̂lt, I calculate each firm’s production-

offshoring capability as Θ̂it =
∑

l∈L yiltθ̂lt. The estimates of Θ̂it imply that a firm importing
from all countries in the sample has a production-offshoring capability that is 10.3 percent
larger than a firm obtaining intermediates solely from the domestic market.

The effect of a firm’s production-offshoring capability on its marginal cost is determined
by the parameter ρ. To estimate ρ, I run the following regression derived from the definition
of production-offshoring potentials:̂ln θlt = − (ρ− 1) · ln (1 + Tlt) + νlt. (10)

Here, Tlt is the ad valorem tariff rates, and νlt captures other determinants of offshore
production costs such as wage and shipping costs. I project the estimated production-
offshoring potentials on changes in tariffs instead of alternative cost shifters like wages and
shipping costs because tariffs are more likely to be exogenous to firm characteristics.

Table 8 reports coefficient estimates for Equation (10). Column (1) serves as the baseline
without any controls, while column (2) includes controls for population, common language,
and colonial relationships. In column (3), I further control for human capital and the level
of corruption in the country. The coefficient estimate of tariffs remains consistent across
different sets of controls. Using column (1) as the baseline, I estimate ρ to be 3.739.

I then construct the intermediate price index for each firm as pmit =
(∑

l yilt · θ̂lt
) 1

1−ρ̂
.

The intermediate price that a firm faces when it imports from all countries is approximately
3.52 percent lower compared to a firm that only obtain intermediates domestically.

Finally, I recover the demand elasticity η from markups. With CES preferences and
monopolistic competition, the ratio of sales to total variable cost is η/(η− 1), implying that
η = Rit/tvcit

Rit/tvcit−1
, where Rit and tvcit are the firm’s revenue and total variable cost. The median

markup in the sample is 1.237, suggesting an estimate of η̂ = 5.217. Appendix A presents
further information on the construction of total variable cost using census data variables.

V.B.2 Step 2—Cost Function and Productivity Evolution

To allow revenue to be measured with error, I augment the original revenue function with
an independently and identically distributed error term uit:

lnRit = (1−η) ln
(

η

η − 1

)
+lnΦjt+(1−η) (β0 + βk ln kit + βw lnwjt + βm ln pmit − ωit)+uit.

(11)
The composite error term uit − (1 − η)ωit correlates with firm’s input choices due to its
inclusion of firm productivity. As a result, a simple OLS regression for this equation would
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yield biased estimates for the coefficients of input factors.
Building on insights from Olley and Pakes (1996) and Ackerberg, Caves and Frazer

(2015), I assume there is a fully flexible energy input nit that, conditioning on other factor
inputs, strictly increases with the firm’s realized productivity. Strict monotonicity guarantees
inversion, allowing me to express productivity as a conditional function of the variable energy
input; that is, ωit(nit; kit, p

m
it ). Using this and combining industry-year level terms, Equation

(11) can be written as

lnRit = ψ0 + ψjt + (1− η) (βk ln kit + βm ln pmit − ωit)︸ ︷︷ ︸
ϕit

+uit, (12)

ψ0 = (1− η) ln (η/(η − 1)) + (1− η)β0, ψjt = lnΦjt + (1− η)βw lnwjt,

where ϕ̂it is estimated as a second-order polynomial function h (kit, pmit , nit). Identification of
h comes from mean independence of uit. ψjt will be absorbed by industry-year fixed effects.

By plugging the estimate ϕ̂it into the productivity evolution process in Equation (7), I
obtain the following nonlinear equation:

ϕ̂it =β
∗
k · ln kit + β∗

m · ln pmit − α∗
0 + α1 ·

(
ϕ̂it−1 − β∗

k · ln kit−1 − β∗
m · ln pmit−1

)
−
∑
l

[
1 +X ′

lt−1µ
]
· [β∗

1rilt−1 + β∗
2rilt−1yilt−1 + β∗

3yilt−1]− ξ∗it, (13)

where the transformation x∗ = (1 − η)x. I estimate this equation using Nonlinear Least
Squares, where the identification of parameters comes from the mean independence of the
innovation in productivity, i.e. ξit, and the timing assumptions. Once the coefficients are
estimated, a firm’s productivity can be computed as follows:

ωit = − ϕ̂it

1− η̂
+ β̂k · ln kit + β̂m · ln pmit .

Table 9 presents estimates of Equation (13). In the baseline specification, Column (1),
the elasticity of capital is estimated at -0.164, indicating that doubling a firm’s capital stock
reduces its marginal production cost by 16.4%. The positive coefficient for intermediate price
confirms that unit production costs increase as intermediates become more expensive.

The estimates of β1 to β3 indicate that the contribution of stand-alone offshore R&D to
productivity is not statistically significant.23 However, offshore R&D accompanied by off-
shore production significantly increases the firm’s future productivity. Additionally, offshore

23The result that β̂1 is not significantly different from zero partly reflects the fact that stand-alone offshore
R&D is typically on a small scale. In host countries where the firm has R&D but no production, the
average R&D expenditure is less than 20% of that in host countries where the firm has both R&D and
production (which is also a reflection of colocation). A model that accounts for both the extensive margin
and the intensive margin of offshore R&D investment can “micro-found” the small magnitude of the return
to stand-alone R&D.
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production itself contributes positively to productivity, likely due to the learning-by-doing
effect. These findings emphasize the importance of the synergy effect, where the proximity
between production and innovation is crucial for enhancing innovation efficiency.

To test the robustness of these estimates, Column (2) of Table 9 includes only firms with
foreign employees, likely multinationals, in contrast to the full sample, which includes many
domestic firms that have not offshored. Column (3) excludes countries typically considered
tax havens in order to address the potential concern that R&D expenditures may reflect tax
evasion incentives rather than genuine innovation activities.24 The known tax havens in the
sample include Hong Kong, Ireland, Luxembourg, the Netherlands, Switzerland, and Sin-
gapore (Gravelle, 2015).25 Column (4) excludes China, showing that the estimated synergy
effect is not mainly driven by offshoring to China. Additionally, Appendix B uses a two-step
control function approach to address potential measurement error in the R&D indicator from
local innovation incentives, confirming robust estimates in Appendix Table A1.

For easier interpretation of the magnitude of the synergy effect, Table 9 also reports
the mean, standard deviation, and maximum of (1 +X ′µ̂)β̂2 across countries. On average,
colocating R&D with production in a foreign country increases firm productivity by 0.05%

to 0.07% in the following year. In countries with the highest synergy effect, the return is
0.17% to 0.21%. Figure 7 shows the annual average of 1 +X ′µ̂ for each country, indicating
that the synergy effect is strong for Mexico and India, but weak for Australia and Russia.26

V.B.3 Step 3—Dynamic Parameters

The elasticity estimates obtained from Steps 1 and 2 confirm that the inequality condition
required by Proposition 1 is satisfied, i.e. (η − 1)βm > ρ − 1. This provides additional
evidence supporting the model’s supermodularity, alongside the reduced-form evidence on
positive cross-country interdependence.

The supermodularity property ensures that the model can be solved using the algorithm
24However, the specification that examines discrete R&D and production decisions is already less suscep-

tible to misreporting concerns compared to a continuous analog because firms might hide part of the R&D
revenue at a location but are unlikely to hide the entire presence of an R&D lab.

25This list is based on the U.S. Congressional Research Service and aligns with those from the Organization
for Economic Cooperation and Development (OECD) and the U.S. Government Accountability Office (GAO).

26The estimates suggest a larger synergy effect in countries farther from the U.S. with less human and
physical capital. Several factors may explain this. First, the initial obstacles of innovating without producing
are higher in poorer countries. For instance, new product testing that requires communication with the U.S.
headquarter is more difficult in a stand-alone lab in South Africa than in Canada. Second, immersion in
an exotic culture can spark new ideas and provides differentiated innovation. Third, higher fixed costs of
offshoring to poorer countries may lead firms to produce more there to justify these costs, thus boosting the
return to R&D. Finally, the specialization of countries in different industries introduces heterogeneity that
is not accounted for. This paper does not provide further evidence for which explanations are more relevant.
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outlined in Section V.A. However, the dynamic model does not yield a closed form solution
for firms’ location choices given market observables and parameter values. Therefore, I use
simulation methods to estimate the dynamic cost parameters. Commonly used simulation
methods include the method of simulated log likelihood (MSL) and the method of simulated
moments (MSM). Implementing MSL is difficult because the cross-country and cross-period
dependencies in the location choices imply that the log-likelihood of the sample is no longer
the sum of the log-likelihood of each country and period, and one needs an exceptionally
large number of simulations to get a reasonable estimate. Consequently, I use the MSM
method to estimate five dynamic parameters, ϕp

s, ϕ
r
s, ϕ

r
f , ϕ

p
f and λ1.

As shown in Table 10, six moments are used to identify these five parameters. The
first two moments, E[yilt] and E[rilt], reflect the fraction of firms offshoring production and
R&D to foreign countries, respectively, and help identify the fixed costs ϕr

f and ϕp
f . The

third and fourth moments, E[yilt (1− yilt−1)] and E[rilt (1− rilt−1)], capture the frequency at
which non-offshoring firms begin offshoring production and innovation, providing information
about the sunk costs ϕp

s and ϕr
s. The last two moments, E[yiltyil′t|cll′ = 1]−E[yiltyil′t|cll′ = 0]

and E[riltril′t|cll′ = 1] − E[riltril′t|cll′ = 0], measure the disparity in the frequency of firms
offshoring production and innovation to both country l and l′ when they are in the same
region compared to when they are not. A higher value of the parameter λ1 results in a larger
disparity in this frequency.

The estimates of cost parameters are reported in Panel A of Table 10. The sunk and fixed
costs of offshoring production to a foreign country are approximately $5 million and $3.3

million. For offshoring R&D, these costs are estimated at around $69.2 million and $41.2

million, comparable to the conditional mean R&D expenditures of the large multinational
firms in my sample, as shown in Table 1. The cost-sharing parameter λ1 is estimated at $1.1
million, representing only 2.6% of the fixed cost of R&D. This indicates that firms colocate
production and innovation primarily to improve innovation efficiency rather than to save on
overhead costs, a hypothesis I further verify through counterfactual analysis.

VI Counterfactual Exercises
This section presents four counterfactual exercises. The first is a model validation, where I
simulate the model-implied effects of the Trump Tariffs on China and show their alignment
with reduced-form predictions. Next, I quantify the relative importance of the two coloca-
tion mechanisms—synergy and cost-sharing—by individually shutting them down. Then, I
simulate counterfactual policies that make it harder for U.S. firms to offshore production
to China and analyze their impact on global production and innovation reallocation. I find
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nontrivial third-country effects and nonlinear effects, contingent on firm heterogeneity and
the magnitude of the shocks. Finally, I highlight my model’s prediction of dynamic losses
from trade policies, distinct from static models of global production and sourcing.

VI.A Model Validation Based On Trump Tariffs

Between 2017 and 2019, the U.S. tariff rate on Chinese goods increased by 3.8 percentage
points on average, rising from 4.07% to 7.87% (based on the Trade Analysis Information
System data). The estimates in Table 5 suggest that this tariff increase will result in a 7.2%
decline in imports and a 0.1 percentage point reduction in the likelihood of offshoring R&D.

In my model, implementing an identical tariff increase corresponds to a 10% reduction
in China’s production-offshoring potential. The model predicts a 6.5% decrease in imports
and a 0.06 percentage point decline in the likelihood of offshoring R&D to China over the
two-year period. This exercise underscores the model’s ability to generate effects of the right
magnitude, aligning well with the reduced-form estimates.

VI.B Quantifying Colocation Mechanisms

I conduct two exercises in this subsection to assess the relative importance of two key mech-
anisms in the model. In the first exercise, I gradually weaken the synergy effect between
production and innovation by reducing the value of β2 from its baseline estimate to zero.
The simulation results are presented in Panel A of Table 11. When β2 is reduced by half,
the probability of offshoring production declines by less than 1% but the probability of off-
shoring R&D drops by 86.2% (third column). The probability of offshoring R&D to a foreign
country, conditional on having offshore production in that country, decreases by more than
85%. These results demonstrate that the synergy effect is a crucial driver of firms’ decisions
to conduct R&D, particularly in countries where they already have production sites.

The second exercise involves reducing the cost-sharing parameter λ1 from its baseline
estimate to zero, effectively shutting down the mechanism where local production lowers the
fixed cost of conducting R&D. The results of this analysis are presented in Panel B of Table
11. As a consequence of the higher effective offshoring costs, the first two rows show that the
probability of a firm offshoring R&D to a foreign country decreases by 3.3%. The within-
country colocation pattern is also weakened: the probability of a firm conducting R&D
in a foreign country, conditional on having offshore production there, decreases by 3.4%.
Additionally, the cross-country colocation within the same region is negatively affected. In
the third row, given that a firm has production in country l, the probability that it conducts
R&D in other countries within the same region decreases from 7.54 to 7.29 percentage points.
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The fact that these colocation measures are reduced by less than 5% when the cost-
sharing mechanism is eliminated suggests that over 95% of the observed colocation pattern
is driven by the synergy effect (along with implicit scale effects). Coupled with the large
impacts observed in the first exercise, I conclude that the synergy effect is the primary factor
behind firms’ incentives to colocate production and innovation.

VI.C Effects of Bilateral Trade Policies

In recent years, the trade relationship between the world’s two largest economies, the U.S.
and China, has become increasingly contentious. China has been a major target of the
U.S. in the trade war since 2018 and recent trade policies of both the Trump and Biden
administrations. The increased tariffs and U.S. government’s reshoring efforts together made
it more costly for U.S. firms to offshore production to China.

My framework is particularly well-suited for analyzing such policies for three main rea-
sons. First, it considers that trade policies affecting the production locations of multina-
tional firms will also influence their R&D locations due to colocation incentives. Second, it
accounts for third-country effects by incorporating cross-country interdependencies. Third,
it captures not only the static losses from trade shocks but also the dynamic losses that arise
from endogenous innovation.

In this exercise, I simulate two sets of policy shocks that negatively impact U.S. firms’
production offshoring to China after 2017. The first set of shocks involves tariff increases,
represented as a reduction in China’s production-offshoring potential by 30% to 100%. The
second set of shocks pertains to rising fixed and sunk costs for production offshoring in China,
increasing by 5 to 300 million dollars. I examine how these shocks of varying magnitudes
affect the global distribution of production and innovation.

The results show that worsening offshoring conditions in China lead to some reshoring of
production to the U.S., but the corresponding reshoring of innovation remains limited. For
example, when China’s sunk and fixed production costs increase by $50 million, the U.S.
share of global production rises by 1.07 percentage points (10.6%), while its innovation share
increases by only 0.008 percentage points (0.6%). This modest uptick in U.S. innovation is
driven by two factors. First, some innovation leaving China is redirected to countries like
Brazil and France, which offer a favorable combination of low production costs and relatively
high innovation returns. Second, a scale effect partially offsets the reshoring of innovation
to the U.S.: Many firms choose to produce in China to take advantage of its low production
costs while innovating in the U.S. for higher returns. When these firms face rising offshoring
costs, they scale down operations globally, including reducing innovation in the U.S.

32



The second observation is the importance of third-country effects from bilateral trade
policies. When the U.S. raises tariffs on China by 14%, equivalent to reducing China’s
production-offshoring potential by 30%, the likelihood of a firm offshoring production to
China over the next two years decreases by 5.9 percentage points (23%), with the corre-
sponding decline for other regions of the world (ROW) at 0.8 percentage points (5.5%). The
probability of offshoring R&D to China falls by 0.13 percentage points (9.7%), with an even
larger decrease of 0.15 percentage points (11.4%) for ROW. These non-trivial third-country
effects consistently appear across all counterfactual policy shocks and are driven by the
cross-country interdependencies embedded in my framework—an element often overlooked
in previous models that assume independent decisions in each country.

The changes in the innovation shares of China, the U.S., and ROW reveal interesting
nonlinear patterns, as shown in Figure 8.27 For moderate shocks (e.g. when production costs
rise by less than 150 million dollars), innovation shares increase for both China and the U.S.,
while they decrease for ROW. However, under larger shocks, innovation shares decline in
China but rise in both the U.S. and ROW.

Firm heterogeneity plays a key role in driving these nonlinear effects on innovation shares.
Figure 9 shows the fraction of firms offshoring production and innovation to China and other
countries, categorized by deciles of firm productivity and capital stock. It reveals that many
firms with relatively low productivity and capital stock tend to produce in China without
conducting innovation there, instead performing R&D in other countries. This pattern arises
because China is estimated to have the highest production-offshoring potential (see Figure
6) but a relatively low synergy between production and innovation (see Figure 7).

When a moderate trade shock occurs, smaller and less efficient firms are the first to
be affected. Due to the firm-level scale effect, they reduce offshoring activities globally,
particularly cutting down production in China and innovation in the ROW. This results in a
relative increase in China’s share of globa innovation. However, as the shock intensifies (e.g.,
in the case of full U.S.-China decoupling), even firms in the top decile (upper-right blocks in
the figure) that also innovate in China are impacted. At this point, innovation shares shift
away from China towards the U.S. and ROW.

Taking stock, I find that U.S. reshoring policies effectively bring production back to the
U.S., though the impact on innovation reshoring is more moderate. There are significant
third-country effects resulting from U.S.-China bilateral policies, along with nonlinear shifts
in innovation shares that depend on firm heterogeneity and the intensity of the policy.

27ROW refers to the sum of individual third-party countries. Country-specific results from the counter-
factual exercises are detailed in Appendix Figure A8.
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VI.D Dynamic Effects of Trade Policies

One important distinction between my framework and previous static models of global pro-
duction and sourcing is that it incorporates endogenous productivity that is affected by
firms’ R&D investments. As a result, my framework can evaluate not only the static losses
from adverse trade shocks, which are standard in traditional models, but also the dynamic
losses that arise as offshoring decisions and endogenous productivity interact. The final
counterfactual exercise illustrates this by simulating a permanent 50% reduction in China’s
production-offshoring potential, while holding all other environmental factors—such as other
countries’ offshoring potentials and industry demand—constant across years.

The simulation results indicate a 1.8 percentage point decline in the probability of off-
shoring production and a 0.26 percentage point reduction in the probability of offshoring
innovation to a host country, immediately following the shock. Panel A of Figure 10 presents
additional outcome measures related to static losses: the distributions of log intermediate
prices and log marginal production costs both shift rightward, indicating rising costs. Cor-
respondingly, the distribution of log profits shifts leftward. These changes reflect the static
losses from reduced production offshoring opportunities, aligning with the findings of earlier
static global production and sourcing models.

Furthermore, this adverse trade shock generates dynamic losses, as shown in Panel B of
Figure 10. With the decline in China’s production-offshoring potential, firms immediately
reduce their offshore production and innovation, which subsequently diminishes their future
productivity. Lower productivity and a smaller operational scale make it more difficult for
firms to overcome the sunk and fixed costs of offshoring, further reducing their likelihood of
engaging in production and innovation abroad. Additionally, firms face rising intermediate
prices and marginal production costs due to the reduced scale of offshore production during
this process. These negative effects accumulate over time: initial average productivity losses
begin at zero but gradually build up to around 0.45% over a decade, while average annual
firm profits drop by 3.7% in the first year and intensify to a 6.5% decline after ten years.

VII Conclusion
In this paper, I study the location choices of multinational firms regarding the offshoring of
production and innovation. I show empirically the importance of colocation benefits between
production and innovation, as well as the interdependence of these decisions across countries.
Causal evidence shows that an increase in a host country’s tariff not only reduces production
and innovation within that country but also affects neighboring countries in the region.
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I contribute to the literature on multinational production and innovation by developing
a dynamic framework that allows for direct interaction between production and innovation
while accounting for cross-country interdependence. My model incorporates rich static and
dynamic complementarities in offshoring decisions. Additionally, I establish conditions for
the model’s supermodularity and apply a new algorithm to effectively solve this otherwise
NP-hard problem. The quantification exercises reveal that the synergy effect between pro-
duction and innovation is the primary driver for firms to colocate these activities.

I apply the model to assess the impact of U.S. trade policies that negatively affect produc-
tion offshoring to China. The results reveal significant third-country effects and nonlinear
effects in innovations shares, which are contingent upon firm heterogeneity and the scale of
the policy shocks. Moreover, I highlight the importance of dynamic effects that are absent
in previous static frameworks of global production and sourcing. These findings suggest that
policymakers must consider the interplay between production and innovation, as well as the
complex and potentially unintended consequences that offshoring and reshoring policies may
have on the global geography of innovation.
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Figures and Tables
Figure 1: U.S. Offshore Production and R&D in 2017
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Notes: This figure plots the offshore production and R&D activities of U.S. multinational firms across destination countries
and regions for the year 2017. The data is sourced from the Bureau of Economic Analysis’s Survey of U.S. Direct Investment
Abroad (USDIA), which gathers information on the activities of all U.S. multinational parent firms and their foreign affiliates.
Offshore Production is measured by the dollar value of goods supplied by foreign affiliates. Offshore R&D refers to the research
and development activities performed by foreign affiliates. Each observation is a country or region.

Figure 2: Correlation between Offshored Production and Imports
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Notes: This figure compares the amount and growth rate of offshored production and imports from 2005 to 2019 to evaluate
the strategy of using imports as a proxy for offshore production. The values of annual offshored production are sourced from
the BEA. Total imports are calculated from the LFTTD.
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Figure 3: Spatial Distribution of U.S. Offshore Activities
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Notes: This figure illustrates the spatial distribution of U.S. offshore innovation and production. Panel A displays U.S. imports
from each origin country, using data from the World Trade Organization (WTO). Panel B plots U.S. offshore R&D expenditure
in each foreign country, with data sourced from the BRDIS. Panel C shows the correlation between these two offshore activities
by plotting the log of R&D expenditure against the log of import value across countries. All data is from the year 2019. The
gray color in the first two panels indicates missing data. Countries not surveyed in the BRDIS are grouped into a residual
categories, which account for less than 5% of total U.S. offshore R&D.

Figure 4: Coverage of Trump Tariffs by Country
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Notes: This figure presents the coverage of the Trump Tariffs policy by country. The top panel displays the log number of
products affected by the tariff increases in 2018 and 2019. The bottom panel shows the average effective tariff rate increase
during this period for the affected products. The raw data is obtained from Fajgelbaum et al. (2020) and Fajgelbaum et al.
(2022). The “effective tariff rate increase” for a product refers to the raw tariff increase scaled by the number of months in a
year that the increase was in effect. For example, if a 10 percentage points tariff increase was implemented in July 2018 and
lasted until the end of 2019, the scaled tariff increase for this period would be 6.67 percentage points, calculated as 10× 18/24.
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Figure 5: The Effect of Trump Tariffs on Offshoring
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Notes: This figure presents coefficient estimates from Equation (5). Each panel corresponds to a different outcome variable.
Dummy variables capture the extensive margin, log values capture the intensive margin, and the inverse hyperbolic sine (Ihs.)
transformed values capture the combination of both margins. The regressions include firm-country fixed effects, country-year
fixed effects, and firm sales and employment as control variables. Standard errors are clustered at the firm level. 90% and
95% confidence intervals are plotted as error bars. Coefficient estimates and statistics are rounded to four effective digits in
accordance with Census data disclosure requirements.

Figure 6: Validation of Estimated Production Offshoring Potentials
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Notes: This figure plots the log of estimated production-offshoring potential (log θ̂lt) against the number of importing firms to
cross-validate the estimates. Panel A displays China’s production-offshoring potentials for U.S. firms between 2008 and 2019.
Panel B shows the production-offshoring potentials of all countries for U.S. firms in the census year 2017. For details on the
definition of production-offshoring potentials, see Section IV. The estimation methodology is discussed in Section V.B.1.

Figure 7: Estimated Synergies Between Production and Innovation
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Notes: This figure plots the yearly average of the estimated coefficients (1 + X′
ltµ̂) from Equation (7), reflecting countries’

heterogeneity in the synergy between production and innovation. X is a vector of country characteristics, including human
capital stock, log distance to the U.S., and capital services. µ̂ represents the coefficient estimates from Column (1) of Table 9.
Countries in gray are not surveyed in the BRDIS and thus are not included in the study sample. These countries are categorized
into residual groups such as “Other African Countries,” collectively accounting for a small fraction of U.S. offshore R&D.
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Figure 8: Simulated Effects of Bilateral Policy Shocks
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Notes: This figure presents the changes in production and innovation shares for China, the USA, and the rest of the world (ROW) under various counterfactual scenarios.
The production share for l is computed as

∑
i yil/

∑
il yil, and the innovation share is computed similarly as

∑
i ril/

∑
il ril. Panel A shows how these shares adjust in

response to increases in U.S. import tariffs on China, with tariff increases reflected as percentage decreases in China’s offshoring potential (30%, 60%, 80%, 90%, and 100%).
Panel B illustrates how these shares shift when the sunk and fixed costs of producing in China rise by different amounts, ranging from 5 to 300 million dollars.

Figure 9: Firm Heterogeneity in Offshoring Patterns
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Notes: This figure shows the fraction of firms engaging in production offshoring (Panel A) and innovation offshoring (Panel B) to China and the rest of the world (ROW)
from 2015 to 2017, based on simulated data from the baseline model. Firms are grouped by productivity deciles on the x-axis and capital stock deciles on the y-axis.
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Figure 10: Dynamic Effects of Trade Policies
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Notes: This figure presents static losses (Panel A) and dynamic losses (Panel B) resulting from a permanent shock that reduces China’s production-offshoring potential by
half. Panel A displays the distributions of log marginal production cost, log intermediate price, and log profit one year after the shock, along with their baseline counterparts.
Panel B illustrates the changes in productivity, log intermediate price, and the probability of offshoring over several years following the shock.
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Table 1: Summary Statistics
Panel A. Firm-Year Level

Mean Sales ($K) 497700
Mean Employment 2945
Mean Domestic Employment 1797
Mean Foreign Employment 1145
Observations 85000

% Importing 83.40
Conditional on Importing

# Import Countries 8.007
Mean Import Value ($K) 142800

% Performing R&D 57.95
Conditional on Performing R&D

Mean R&D Expenditure ($K) 49400
Mean Domestic R&D Expenditure ($K) 38030
Mean Foreign R&D Expenditure ($K) 11380
% Performing Foreign R&D 19.65

Conditional on Performing Foreign R&D
# Foreign R&D Countries 5.63
Mean Foreign R&D Expenditure ($1K) 61970

Panel B. Firm-Country-Year Level
Observations 3475000

% Importing 16.06
Conditional Imporot Value ($1K) 17840

% Performing Foreign R&D 1.303
Conditional Foreign R&D Expenditure ($1K) 11010

Notes: This table presents summary statistics of firms in the study sample, which is constructed by combining three census
micro datasets—the BRDIS, LFTTD, and CFM/ASM. Statistical values are rounded to four effective digits, and the number
of observations is rounded to the nearest thousand, in accordance with Census data disclosure requirements. Panel A provides
statistics at the firm-year level. Panel B details the firm-country-year level.

Table 2: Top Five Offshoring Destinations

Top R&D Locations
Share R&D

Expenditure (%) Top Import Locations
Share Import
Value (%)

(1) (2) (3) (4)

Germany 14.76 Mexico 19.51
UK 11.32 Canada 17.76
China 8.25 China 12.58
India 6.78 Japan 8.18
Canada 5.38 Germany 7.16

Notes: This table lists the top five destination countries for U.S. offshore R&D and the origin countries for U.S. imports between
2010 and 2019. Statistical values are rounded up to four effective digits in accordance with Census data disclosure requirements.
Column (2) shows each country’s share of total U.S. foreign R&D expenditure. Column (4) shows each country’s share of total
U.S. import value. The R&D expenditure data is from the BRDIS and import data from the LFTTD.

Table 3: Offshoring Modes of Production and Innovation
Mode Fraction of observations Share import Value (%) Share R&D Expenditure (%)

(1) (2) (3)

None 83.75 0 0
Import Only 14.94 62.26 0
R&D Only 0.19 0 6.17
Both 1.12 37.74 93.83

Total 100 100 100

Notes: This table summarizes four offshoring modes and their respective shares in the number of observations, import value,
and R&D expenditure. Observations are at the firm-country-year level. Offshoring modes are defined based on whether R&D
expenditure and import value in an observation are positive or zero. Statistical values are rounded to four effective digits in
accordance with Census data disclosure requirements. Data on R&D expenditure is obtained from the BRDIS. Data on import
value is obtained from the LFTTD.
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Table 4: OLS Coefficient Estimates for Two Facts
Panel A. Regress R&D on Import

R&D Dummy R&D Dummy Log R&D Log R&D Ihs. R&D
(1) (2) (3) (4) (5)

Import Dummy 0.0195*** 0.322***
(0.00109) (0.119)

Region Import Dummy 0.00147*** -0.00580
(0.000338) (0.143)

Log Import 0.0150*** 0.212***
(0.000761) (0.0191)

Log Region Import 0.00167*** 0.0105
(0.000626) (0.0211)

Ihs. Import 0.0217***
(0.00102)

Ihs. Region Import 0.000936***
(0.000233)

N 499000 41000 4100 3100 499000
R-squared 0.392 0.486 0.569 0.592 0.419
Firm FE Yes Yes Yes Yes Yes
Country-Industry FE Yes Yes Yes Yes Yes

Panel B. Regress Import on R&D

Import Dummy Import Dummy Log Import Log Import Ihs. Import
(1) (2) (3) (4) (5)

R&D Dummy 0.210*** 1.763***
(0.00909) (0.0546)

Region R&D Dummy 0.0591*** 0.239***
(0.00634) (0.0498)

Log R&D 0.00498 0.325***
(0.00329) (0.0308)

Log Region R&D 0.000284 0.106***
(0.00428) (0.0403)

Ihs. R&D 0.576***
(0.0161)

Ihs. Region R&D 0.126***
(0.0100)

N 499000 2800 57000 2300 499000
R-squared 0.421 0.608 0.476 0.681 0.471
Firm FE Yes Yes Yes Yes Yes
Country-Industry FE Yes Yes Yes Yes Yes

Notes: This table presents coefficient estimates from equation (1) using data from 2017. Panel A regresses R&D measures on
import measures, while Panel B does the opposite. Observations are at the firm-country level. “Region Import” and “Region
R&D” refer to the firm’s total import value and R&D expenditure in all countries of the host region, excluding the focal
host country itself. Dummy variables capture the extensive margin, log values capture the intensive margin, and the inverse
hyperbolic sine (Ihs.) transformed values capture the combination of both margins. Industries are classified by 3-digit NAICS
codes. Standard errors are clustered at the firm level and reported in parentheses. Coefficient estimates and regression statistics
are rounded to four effective digits, and the number of observations is rounded to the nearest thousand, in accordance with
Census data disclosure requirements. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table 5: Instrumental Strategy Coefficient Estimates
Panel A. Reduced-Form Regression

Ihs. Import Import Dummy Log Import Ihs. R&D R&D Dummy Log R&D
(1) (2) (3) (4) (5) (6)

Tilt -1.906*** -0.0643* -5.163*** -0.239*** -0.0281*** -0.728
(0.504) (0.0357) (0.712) (0.0811) (0.0104) (1.531)

N 1516000 1516000 317000 1516000 1516000 27500
R-sq 0.491 0.440 0.396 0.401 0.384 0.475
Firm-Year FE Yes Yes Yes Yes Yes Yes
Country-Year FE Yes Yes Yes Yes Yes Yes

Panel B. 2SLS Regression

Ihs. Import Ihs. R&D Ihs. R&D R&D Dummy R&D Dummy
(1) (2) (3) (4) (5)

Ihs. Import 0.0252*** 0.125** 0.00315*** 0.0147**
(0.00111) (0.0493) (0.000131) (0.00616)

Tilt -1.906***
(0.504)

Method OLS OLS IV OLS IV
1st-stage F 61.93
N 1516000 1516000 1516000 1516000 1516000
Firm-Year FE Yes Yes Yes Yes Yes
Country-Year FE Yes Yes Yes Yes Yes

Panel C. Reduced-Form Regression for Interdependence

Ihs. Import Import Dummy Log Import Ihs. R&D R&D Dummy Log R&D
(1) (2) (3) (4) (5) (6)

Tilt -2.817*** -0.124*** -5.689*** -0.226** -0.0240** -1.108
(0.531) (0.0373) (0.723) (0.0890) (0.0113) (1.590)

TiRt -1.666*** -0.119*** -1.638* -0.461*** -0.0612*** 1.985
(0.555) (0.0398) (0.886) (0.135) (0.0182) (2.395)

N 1238000 1238000 272000 1238000 1238000 23500
R-sq 0.504 0.452 0.410 0.402 0.383 0.481
Firm-Year FE Yes Yes Yes Yes Yes Yes
Country-Year FE Yes Yes Yes Yes Yes Yes

Notes: This table presents results from the instrumental strategy. Panel A contains coefficient estimates for the reduced-form
specification in equation (3). Panel B provides coefficient estimates for the 2SLS specification in equation (4). Panel C mirrors
Panel A but includes the additional regressor TiRt. Observations are at the firm-country-year level. Dummy variables capture
the extensive margin, log values capture the intensive margin, and the inverse hyperbolic sine (Ihs.) transformed values capture
the combination of both margins. Standard errors are clustered at the firm level and reported in parentheses. Coefficient
estimates and regression statistics are rounded to four effective digits, and the number of observations is rounded to the nearest
thousand, in accordance with Census data disclosure requirements. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table 6: Difference-in-Differences Coefficient Estimates

Log Import Ihs. R&D R&D Dummy Log R&D
(1) (2) (3) (4)

Treat × Post -0.106*** -0.0945* -0.0130** -0.151**
(0.0263) (0.0494) (0.00637) (0.0659)

Share Affected Products × Post -0.258* -0.189*** -0.0207*** -0.250
(0.137) (0.0567) (0.00757) (0.518)

Share Affected Product Value × Post -0.161* -0.160*** -0.0175** -0.243
(0.0861) (0.0596) (0.00772) (0.250)

Product-Count Weighted Effective Tariff
Increase × Post -1.686** -0.758** -0.101** 3.031

(0.845) (0.318) (0.0421) (2.958)
Product-Value Weighted Effective Tariff
Increase × Post -1.098** -0.642** -0.0807** 0.119

(0.540) (0.313) (0.0394) (1.760)

N 187000 187000 187000 16500
R-squared 0.889 0.877 0.838 0.893
Firm-Country FE Yes Yes Yes Yes
Country-Year FE Yes Yes Yes Yes

Notes: This table presents coefficient estimates from equation (6). Each row represents a different regression with varying
measures of treatment. The dummy variable “Treat” equals one for firm-country pairs affected by the Trump Tariffs. The
“Post” dummy equals one for the year 2019 and zero for the years 2014-2017. Four additional continuous measures of treatment
are considered in the second to fourth rows: ”Share Affected Products” is the fraction of product counts affected by the Trump
Tariffs among all products the firm used to import; (2) ”Share Affected Product Value” is the value share of affected products
defined similarly; (3) “Product-Count Weighted Effective Tariff Increase” is the simple average of the effective tariff increase
across the firm’s imported products; (4) “Product-Value Weighted Effective Tariff Increase” is the weighted average of the
effective tariff increase across the firm’s imported products, with weights being the import value shares in the prior period.
Dummy variables capture the extensive margin, log values capture the intensive margin, and the inverse hyperbolic sine (Ihs.)
transformed values capture the combination of both margins. Standard errors are clustered at the firm level and reported in
parentheses. Coefficient estimates and regression statistics are rounded to four effective digits, and the number of observations
is rounded to the nearest thousand, in accordance with Census data disclosure requirements. * p < 0.1, ** p < 0.05, ***
p < 0.01.

Table 7: Model Parameters and Sources of Identification

Parameter Source of Identification

η Average markup.

ρ Response of country production-offshoring potential to tariff change.

βk, βm Relationship between output and input factors.

α0, α1, σξ Persistence and variation in firm productivity.

β1, β2, β3,µ Relationship between productivity change and innovation efforts in each country.

ϕp
s , ϕ

r
s, ϕ

p
f , ϕ

r
f Fraction of firms offshoring production and innovation (unconditional and conditional on past choices).

λ1 Colocation of production and innovation in and out of the region.

Notes: This table lists the model parameters and their primary sources of identification. Refer to the model setup in Section
IV for their definitions.
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Table 8: Production-Offshoring Potentials and Tariffs
ln θ̂lt

(1) (2) (3)

ln(1 + Tlt) -2.739* -2.952*** -3.697***
(1.567) (1.123) (1.110)

Log Population 0.358*** 0.580***
(0.0203) (0.0252)

Common Language Dum 0.0246 -0.109*
(0.0820) (0.0601)

Colony Dum 0.0622 -0.210***
(0.0712) (0.0535)

Human Capital Index 0.657***
(0.0840)

Control of Corruption Index 0.230***
(0.0467)

N 450 450 450

Notes: This table presents coefficient estimates from equation (10). Observations are at the country-year level. Tlt is the ad
valorem tariff rate. Standard errors are reported in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.

Table 9: Estimation of Production Function and Productivity Evolution Process

Full Sample
Firms with Foreign

Employmees
Excluding Tax

Havens Excluding China
(1) (2) (3) (4)

Capital Coefficient, βk -0.164*** -0.172*** -0.164*** 0.164***
(0.0017) (0.0027) (0.0017) (0.0017)

Intermediate Price Coefficient, βF
m 0.435*** 0.412*** 0.435*** 0.435***

(0.0049) (0.0075) (0.0049) (0.0049)
Constant in AR(1): α0 -0.0433*** -0.0521*** -0.0431*** -0.0433***

(0.0027) (0.0048) (0.0027) (0.0027)
Slope in AR(1): α1 0.909*** 0.907*** 0.909*** 0.909***

(0.0038) (0.0056) (0.0038) (0.0038)
Return to Innovation: β1 -0.000803 -0.00095 -0.001 -0.000624

(0.0021) (0.0028) (0.0019) (0.0022)
Return to Colocation: β2 0.0064** 0.0072* 0.0058** 0.0064**

(0.0031) (0.0038) (0.0029) (0.0031)
Return to Production: β3 0.00463*** 0.00666*** 0.00418*** 0.00491***

(0.0010) (0.0014) (0.0011) (0.0010)
ρ: Human Capital -0.214*** -0.163*** -0.240*** -0.209***

(0.038) (0.0285) (0.0514) (0.0356)
ρ: Log Distance -0.0409*** -0.0587*** -0.0318* -0.0407***

(0.0137) (0.0098) (0.0182) (0.0136)
ρ: Capital Services -0.0509*** -0.0397*** -0.0604*** -0.0443***

(0.0132) (0.0112) (0.0183) (0.0132)
N 28500 12500 28500 28500
Mean Elasticity 0.0006 0.0005 0.0007 0.0006
SD of Elasticity 0.0006 0.0005 0.0006 0.0006
Max of Elasticity 0.002 0.0017 0.0021 0.002
RMSE 0.126 0.113 0.126 0.126

Notes: This table presents coefficient estimates from Equation (1) using non-linear least squares. Column (1) leverages the
full sample. Column (2) restricts to firms that report to have foreign employees. Column (3) excludes countries known as tax
havens. Column (4) excludes China. βF

m is the elasticity of log unit production cost with respect to log foreign intermediate
price index (Appendix C.2). Log Distance is the log of the country’s geographical distance to the U.S. Human capital and
capital services are indices obtained from Penn World Tables. * p < 0.1, ** p < 0.05, *** p < 0.01. Standard errors are
clustered at the firm level and reported in parentheses. The table also reports the mean, standard deviation, and max of R&D
elasticities implied by the coefficient estimates across countries. The last row reports the root mean squared errors to form an
estimate of σξ.
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Table 10: Estimates of Dynamic Offshoring Costs

Panel A: Parameter Estimates

ϕp
s ϕp

f ϕr
s ϕr

f λ1

5039.31 3304.68 69196.30 41213.89 1058.63
(572.63) (77.11) (16403.78) (4359.88) (352.64)

Panel B: Matched Moments

Moment Data Model

E[yilt] 0.16059 0.1601
E[rilt] 0.01303 0.01297
E[yiltyilt−1] 0.01901 0.01797
E[riltrilt−1] 0.00182 0.00150
E[yiltyil′t|cll′ = 1]− E[yiltyil′t|cll′ = 0] 0.01115 0.01166
E[riltril′t|cll′ = 1]− E[riltril′t|cll′ = 0] 0.00048 0.00039

Notes: This table presents the estimated dynamic costs of offshoring. Panel A provides the point estimates, expressed in
thousands of dollars, with standard errors shown in parentheses. Panel B displays the six moments used in the MSM, comparing
their empirical values from the data to the corresponding simulated values from the model.

Table 11: Relative Importance of Colocation Mechanisms

Panel A: Significance of Synergy Effect

(1) (2) (3) (4) (5)
β2 = β̂2 β2 = 3

4
β̂2 β2 = 1

2
β̂2 β2 = 1

4
β̂2 β2 ≈ 0

E[yilt] 0.1601 0.1593 0.1593 0.1593 0.1593
(100) (99.50) (99.50) (99.50) (99.50)

E[rilt] 0.013 0.0065 0.0018 0.0 0.0
(100) (50.00) (13.85) (0.0) (0.0)

E[rilt|yilt = 1] 0.081 0.0406 0.0116 0.0 0.0
(100) (50.12) (14.32) (0.0) (0.0)

Panel B: Significance of Cost Sharing Effect

(1) (2) (3)
λ1 = λ̂1 λ1 = 0 ∆

E[rilt] 0.0130 0.0125 0.0004
(100) (96.70) (3.30)

E[rilt|yilt = 1] 0.0810 0.0783 0.0028
(100) (96.59) (3.41)

E[ril′t|yilt = 1, cll′ = 1, l′ ̸= l] 0.0754 0.0729 0.0025
(100) (96.67) (3.33)

E[riRt|yiRt = 1] 0.0773 0.0736 0.0037
(100) (95.20) (4.80)

Notes: This table compares the relative importance of two colocation mechanisms: the synergy effect and the cost-sharing effect.
In Panel A, the synergy parameter, β2, is gradually reduced from its baseline estimate to zero, and the resulting model statistics
are reported. In Panel B, the cost-sharing parameter, λ1, is reduced from its baseline estimate to zero, and the corresponding
model statistics are presented similarly. The last column of Panel B shows the difference between the first two columns. The
variables yiRt and riRt are dummy variables equal to one if the firm has production and innovation in region R, respectively.
For both panels, relative percentage changes are reported in parentheses.
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A Data Appendix
This appendix details the construction of firm-level variables in the Census. The total output
Rit is measured by the total value of shipments adjusted for inventories and the cost of resales:

Rit =

(TVSit + FIEit − FIBit + WIEit − WIBit − CRit) /PISHIPjt, if positive;

TVSit/PISHIPjt, otherwise.
TVS represents the total value of shipments. FIE and FIB denote the total value of finished
goods inventories at the end and beginning of the year, respectively. WIE and WIB are the
work-in-progress inventories at the end and beginning of the year, respectively. CR stands
for the cost of resales. All these raw variables are measured in nominal dollars. They are
deflated using PISHIP, the four-digit industry-level shipments deflator from the NBER-CES
Manufacturing Database.

Domestic materials (excluding energy) is defined as the real value of non-energy material
inputs:

Mit = (CPit + CRit + CWit) /PIMATjt.

CP is the total cost of materials and parts, CW is the total cost of contract work done by
others, and PIMAT is the NBER-CES 4-digit industry level materials deflator.

Energy cost primarily includes expenses on electricity and fuels:

Eit = (EEit + CFit) /PIENjt.

EE is the cost of purchased electricity, CF is the cost of fuels, and PIEN is the NBER-CES
4-digit industry level energy deflator.

Capital stock Kit is not directly available in the ASM and CMF, so it is constructed
using the Perpetual Inventory method for equipment and structures separately. The detailed
procedures for estimating initial values and discounting are described in Cunningham, Foster,
Grim, Haltiwanger, Pabilonia, Stewart and Wolf (2021).

The total variable cost TVCit is computed as the sum of wages (SWit), material cost
(Mit), energy cost (Eit), and total capital expenditures (raw variable TCE).
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B Discussing Measurement Error in R&D
Offshore activities can be categorized into three types based on whether they are organized
within or outside the firm and whether the products are used for U.S. plants or local sales.
Figure A1 illustrates these three types: area I represents within-firm offshored and externally
outsourced activities related to products sold directly in the host country or its neighboring
countries; areas II and III represent within-firm offshored activities and externally outsourced
activities related to products used in the U.S., respectively. The data and model in this
paper are best suited to analyze the colocation of production and innovation in areas II and
III, as imports serve as a good proxy for the production of products shipped back to the
U.S. However, the R&D measure captures the firm’s expenditure on all types of innovation,
potentially including customization efforts in area I for products tailored to the local region.
The inclusion of potential local R&D incentives introduces measurement error in rilt.

Figure A1: Scope of Production and Innovation Measures

Offshored and outsourced production
for local and platform sales

Offshored products
coming back to the US

Outsourced products
coming back to the US

Customization R&D for
local and platform sales

R&D serving products
coming back to the US

I

II III

I

II+III

Notes: This figure illustrates the potential source of measurement error in R&D. This paper focuses on the colocation of
production and innovation for products returning to the U.S. (areas II and III). Imports accurately capture offshored production
serving the U.S. plants. However, the R&D measure also includes customization R&D efforts for products sold locally (area I).

To address this issue, I leverage the idea that while U.S. import tariffs affect production
and innovation for products shipped back to the U.S., they arguably do not influence incen-
tives for local production and innovation, as these locally produced and innovated products
are typically sold directly in the host or neighboring countries. As a result, the reduced-form
analyses are immune to this measurement error because, in both the instrumental variable
and event study strategies, tariff shocks have been employed to isolate the relevant variations
in activities that serve the U.S. plants, as local activities are not directly impacted by these
shocks.

A remaining question is whether the structural estimates from equation (13) are robust
to potential measurement error in innovation. Let us start with roilt = rilt + ιilt, where rilt
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Table A1: Structural Estimates—With Measurement Error

ϕ̂it

Capital Coefficient, βk -0.161***
(0.0024)

Intermediate Price Coefficient, βF
m 0.439***

(0.0074)
Constant in AR(1): α0 -0.0409***

(0.0055)
Slope in AR(1): α1 0.926***

(0.0058)
Return to Innovation: β1 0.168

(0.1870)
Return to Colocation: β2 0.0186*

(0.0107)
Return to Production: β3 0.00755***

(0.0019)
ρ: Human Capital -0.0540***

(0.0200)
ρ: Log Distance -0.0810***

(0.0076)
ρ: Capital Services 0.0226*

(0.0130)
Control for Measurement Error: ι̂it -0.181

(0.1880)

N 12000
Mean Elasticity 0.0008
SD of Elasticity 0.0012
Max of Elasticity 0.0045
RMSE 0.12

Notes: This table presents coefficient estimates from equation (1) using the two-step control function approach. βF
m is the

elasticity of log unit production cost with respect to log foreign intermediate price index (Appendix C.2). Log Distance is the
log of the country’s geographical distance to the U.S. Human capital and capital services are indices obtained from Penn World
Tables. * p < 0.1, ** p < 0.05, *** p < 0.01. Standard errors are clustered at the firm level and reported in parentheses. The
table also reports the mean, standard deviation, and max of R&D elasticities implied by the coefficient estimates for different
countries. The last row reports the root mean squared errors to form an estimate of σξ.

is the true value of innovation in areas II and III, roilt is the observed value, and ιilt is the
measurement error that potentially arises from local innovation activities. Assume that ιilt
is orthogonal to the tariff rate Tilt.

The estimation equation that takes into account the measurement error is

ϕ̂it =β
∗
k · ln kit + β∗

m · ln pmit − α∗
0 + α1 ·

(
ϕ̂it−1 − β∗

k · ln kit−1 − β∗
m · ln pmit−1

)
−
∑
l

[1 +Xlt−1ρ] ·
[
β∗
1r

o
ilt−1 + β∗

2r
o
ilt−1yilt−1 + β∗

3yilt−1

]
+ κit. (1)

The new error term κit is a function of the original innovation shock ξ∗it and the measurement
errors {ιilt}l. Given that ιilt is uncorrelated with the tariff rate Tilt, I employ a control
function approach to address the potential measurement error issue. There are two steps.
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In the first step, I regress rilt on Tilt to obtain the residual ι̂ilt. This residual captures
the variations in innovation that stem from local R&D incentives, which are uncorrelated
with import tariffs. In the second step, I estimate equation (1) with the additional control
variable ι̂it that proxies for the measurement error. The parameter estimates are reported
in Appendix Table A1, and they remain close to their counterparts in Table 9.

C Model Appendix

C.1 Microfoundation of CES Input Aggregation

Consider a framework of input sourcing as in Antras, Fort and Tintelnot (2017). Each firm
sources a continuum of intermediate varieties, v ∈ [0, 1]. The varieties aggregate to the firm’s
intermediate accroding to CES,

mit =

[∫ 1

0

qi (v)
σ−1
σ dv

] σ
σ−1

.

Let vit denote the optimal price for sourcing input v. The price index of intermediate is then

pmit =

[∫ 1

0

zit (v)
1−σ dv

] 1
1−σ

.

The firm always sources variety v from the cheapest location, therefore,

zit (v) = min
l∈Lit

{wltτlt(1 + Tlt) · alt (v)} ,

where alt (v) is the unit labor requirement for producing v in country l at time t. Assume
Fréchet distribution such that

Pr (alt (v) ≥ a) = e−Slt·aθ ,

with Slt > 0 capturing the technology level of country l and θ > 0 capturing the dispersion
in productivity. Then it can be shown that the price for intermediate is

pmit =

c0 ·
∑
l∈Lit

Slt (wltτlt(1 + Tlt))
−θ

︸ ︷︷ ︸
Θit:sourcing capability


− 1

θ

where
c0 =

[
Γ

(
θ + 1− ρ

θ

)] θ
1−ρ

.

The share of sourcing for each country is

χil (φ) =
Slt (wltτlt(1 + Tlt))

−θ

Θit

.

53



This is equivalent to a CES aggregation with elasticity of substitution being 1 + θ and unit
labor productivity varying by country as (c0Slt)

− 1
θ .

C.2 Deriving βF
m from βm

The overall price index for intermediate goods is defined to be

pmit =

(
1 +

∑
l>0

yiltθlt

)1/(1−ρ)

,

and that for foreign intermediate goods is

pm,F
it =

(∑
l>0

yiltθlt

)1/(1−ρ)

.

Combining these two equations leads to the following relationship between two price indices:

(pmit )
1−ρ = 1 +

(
pm,F
it

)1−ρ

,

or equivalently,

ln pmit =
ln
(
1 + e(1−ρ)·ln pm,F

it

)
1− ρ

.

Next, let’s define a function

y = f(x) = ln
(
1 + e(1−ρ)x

)
.

Taking the first-order approximation of f(x) around x0 implies

f(x) ≈ 1

1− ρ

[
ln
(
1 + e(1−ρ)x0

)
− e(1−ρ)x0 · (1− ρ)

1 + e(1−ρ)x0
x0

]
+

e(1−ρ)x0

1 + e(1−ρ)x0
· x.

Plugging in y = ln pmit and x = ln pm,F
it to achieve the first-order approximation of the

relationship between the two price indices:

ln pmit ≈ C +
1

1 + e(ρ−1)x0
· ln pm,F

it ,

where
C =

1

1− ρ

[
ln
(
1 + e(1−ρ)x0

)
− e(1−ρ)x0 · (1− ρ)

1 + e(1−ρ)x0
x0

]
.

It follows that
∂ ln pmit =

1

1 + e(ρ−1)x0
· ∂ ln pm,F

it

and thus
βF
m ≡ ∂ ln cit

∂ ln pm,F
it

=
1

1 + e(ρ−1)x0

∂ ln cit
∂ ln pmit

=
1

1 + e(ρ−1)x0
βm

where
βm ≡ ∂ ln cit

∂ ln pmit
.
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Finally, evaluating x0 at the mean value of ln pm,F
it , 1.0274, implies

β̂F
m =

β̂m
1 + e(ρ̂−1)×1.0274

= 0.435.

C.3 Proof of Proposition 1

C.3.1 Lifetime Payoffs

The expected lifetime payoff function Π0 can be decomposed as

Π0 (oi) =
∑
z∈Ω

Pr (z)Π† (oi|z) ,

where Π† (oi|z) is the deterministic lifetime payoff following decision rule oi under history
z. In particular,

Π† (oi|z) =
∞∑
t=0

ζtΠt

(
ωit

(
zt, {oi (z

τ )}t−1
τ=0

)
,oi

(
zt
)
,oi

(
zt−1

))
.

Since payoff in one history is independent of decisions rules along other histories, we can
define Π̃† (oz|z) = Π† (oi (z) |z), which is a function from {0, 1}2LT to R. Note that Π̃† (·|z)
is identical to Π† (·|z), but written as only a function of the subvector of choices for all
countries and periods in a given history z.

C.3.2 Lemmas and Proofs

Lemma 2.6.1 from Topkis (1998) will be used in the proof, and I state it below:

Lemma 1. Suppose X is a lattice. Then,

1. If f(x) is supermodular on X and α > 0, then αf(x) is supermodular on X.

2. If f(x) and g(x) are supermodular on X, then f(x) + g(x) is supermodular on X.

I then state the second lemma that will be proved at the end of this section.

Lemma 2. Π̃† (oz|z) has increasing differences in {0, 1}2LT .

Now, let’s repeat and prove the main proposition here.

Proposition. Π0 (oi|yi,−1, ri,−1, ωi,−1) is supermodular in oi on {0, 1}2LT Ω.

Proof of Proposition. From Lemma 2, Π̃† (oz|z) has increasing differences in {0, 1}2LT . Us-
ing Corollary 2.6.1 in Topkis (1998), Π̃† (oz|z) is supermodular in oz on {0, 1}2LT .
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I then show that Π† (oi|z) is supermodular in oi on {0, 1}2LT Ω. Consider two decision
rules oi,o

′
i ∈ {0, 1}2LT Ω, the following must hold for any history z:

Π† (oi|z) + Π† (o′
i|z) = Π̃† (oi (z) |z) + Π̃† (o′

i (z) |z)

≤ Π̃† (oi (z) ∨ o′
i (z) |z) + Π̃† (oi (z) ∧ o′

i (z) |z)

= Π̃† (oi ∨ o′
i (z) |z) + Π̃† (oi ∧ o′

i (z) |z)

= Π† (oi ∨ o′
i|z) + Π† (oi ∧ o′

i|z) ,

where the first and last equality follow from the relationship between the functions Π̃† (·|z)
and Π† (·|z), the inequality in the second line follows from the supermodularity of the function
Π̃† (oz|z), and the equality in the third line follows from basic linear algebra rules. The “join”
∨ takes the maximum element by element, and the “meet” ∧ takes the minimum element
by element.

Recall that
Π0 (oi) =

∑
z∈Ω

Pr (z)Π† (oi|z) .

Since from Lemma 1 we know that the finite sum of supermodular functions is supermodular,
Π0 (oi) is supermodular in oi on {0, 1}2LT Ω.

What remains to be proved is Lemma 2.

Proof of Lemma 2. For a given history z, unpack the decision rule vector as

oz =
(
{yilt}l∈L,t∈T , {rilt}l∈L,t∈T

)
.

Note that I omit the notation of z in yilt since we are looking at a fixed z throughout this
proof. The goal is to show that Π̃† (oz|z) has increasing difference along yilt and rilt for any
l and any t in the given history z.

Increasing difference along yilt. Consider two decision rules oz,o
′
z ∈ {0, 1}2LT where the

only difference between them is that yilt = 0 and y′ilt = 1 for a specific l and t. The difference
between Π̃† (o′

z|z) and Π̃† (oz|z) has the following components:

• An increase in variable profit πit due to higher sourcing capability:

∆πit =
1

η
·
(

η

η − 1

)1−η

· Φjt ·
(
eβ0

eωit
· kβk

i · wβw

it

)1−η

∗

((wltτlt)
1−ρ +

∑
l′ ̸=l

yil′t · (wl′tτl′t)
1−ρ

) (1−η)βm
1−ρ

−

(∑
l′ ̸=l

yil′t · (wl′tτl′t)
ρ−1
ρ

) (1−η)βm
1−ρ

 .
• A change in the cost paid in period t:

−ϕp
s+yilt−1

(
ϕp
s − ϕp

f

)
+λ1

∑
l1

ril1t−1ril1t

(
max
l2

{cl1l2yil2t|yilt = 1} −max
l2

{cl1l2yil2t|yilt = 0}
)
.
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• A change in the cost paid in period t+ 1: ζt+1 · yilt+1 ·
(
ϕp
s − ϕp

f

)
.

• All future productivities, holding {ξit}t fixed, change by

∆ωit+τ = ζt+τατ−1 [1 +Xltρ] · [β2rilt + β3] , τ ≥ 1.

This leads to changes in variable profit for all periods after t, the sum of which has the
following first-order approximation:

∞∑
τ=1

ζt+τ · 1
η

(
η

η − 1

)1−η

· Φjt+τ ·
(
eβ0 · kβk

it+τ · w
βw

it+τ ·
(
pmit+τ

)βm
)1−η

∗ατ−1 [1 +Xltρ] · [β2rilt + β3] · exp ((η − 1) · ωit+τ (yilt = 0)) .

Combining the four components, the first-order change from Π̃† (oz|z) to Π̃† (o′
z|z) is thus

Π̃† (o′
z|z)− Π̃† (oz|z) =

1

η
·
(

η

η − 1

)1−η

· Φjt ·
(
eβ0

eωit
· kβk

i · wβw

it

)1−η

∗

((wltτlt)
1−ρ +

∑
l′ ̸=l

yil′t · (wl′tτl′t)
1−ρ

) (1−η)βm
1−ρ

−

(∑
l′ ̸=l

yil′t · (wl′tτl′t)
ρ−1
ρ

) (1−η)βm
1−ρ


− ϕp

s + yilt−1 ·
(
ϕp
s − ϕp

f

)
+ ζt+1yilt+1 ·

(
ϕp
s − ϕp

f

)
+ λ1

∑
l1

ril1t−1 · ril1t ·
(
max
l2

{cl1l2yil2t|yilt = 1} −max
l2

{cl1l2yil2t|yilt = 0}
)

+
∞∑
τ=1

ζt+τ · 1
η

(
η

η − 1

)1−η

· Φjt+τ ·
(
eβ0 · kβk

it+τ · w
βw

it+τ ·
(
pmit+τ

)βm
)1−η

∗ ατ−1 [1 +Xltρ] · [β2rilt + β3] · exp ((η − 1) · ωit+τ (yilt = 0)) .

If (1−η)βm

1−ρ
> 1, then the first component is increasing in

∑
l′ ̸=l yil′t · (wl′tτl′t)

1−ρ and thus
yil′t; vice versa if (1−η)βm

1−ρ
< 1. When ϕp

s > ϕp
f , the second and third components are

increasing in yilt−1, yilt+1, rilt, rilt−1, ril′t, ril′t−1. The last component is increasing in rilt when
β2 (1 +Xltρ) > 0. Therefore, Π̃† (oz|z) has increasing differences along yilt for any l and t.

Increasing difference along rilt. Consider two decision rules oz,o
′
z ∈ {0, 1}2LT where the

only difference between them is that rilt = 0 and r′ilt = 1 for a specific l and t. Switching
from the first to the second decision rule doesn’t affect period t’s variable profit, but it affects
next period’s cost and all future periods’ productivities.

The difference between Π̃† (o′
z|z) and Π̃† (oz|z) has the following components:

1. A change in period t+ 1’s cost:

ζt+1rilt+1

(
ϕr
s − ϕr

f + λ1 max
l′

{cll′yil′t+1}
)
.
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2. All future productivities will be increased by

∆ωit+τ = ζt+τατ−1 [1 +Xltρ] · [β1 + β2yilt] , τ ≥ 1.

This leads to a first-order increase in all future periods’ profit that is equal to
∞∑
τ=1

ζt+τ · 1
η

(
η

η − 1

)1−η

· Φjt+τ ·
(
eβ0 · kβk

it+τ · w
βw

it+τ ·
(
pmit+τ

)βm
)1−η

∗ατ−1 [1 +Xltρ] · [β1 + β2yilt] · exp ((η − 1) · ωit+τ (rilt = 0)) .

Combining the two components, the first-order change from Π̃† (oz|z) to Π̃† (o′
z|z) is thus

Π̃† (o′
z|z)− Π̃† (oz|z) = ζt+1rilt+1 ·

(
ϕr
s − ϕr

f + λ1 max
l′

{cll′yil′t+1}
)

+
∞∑
τ=1

ζt+τ · 1
η

(
η

η − 1

)1−η

· Φjt+τ ·
(
eβ0 · kβk

it+τ · w
βw

it+τ ·
(
pmit+τ

)βm
)1−η

∗ ατ−1 [1 +Xltρ] · [β1 + β2yilt] · exp ((η − 1) · ωit+τ (rilt = 0)) .

The first component is increasing in rilt+1, yilt+1 and yil′t+1. The second component is increas-
ing in yilt when [1 +Xltρ] · [β1 + β2yilt] ≥ 0 and decreasing in pmit+τ , implying that it is also
increasing in yilt+τ and yil′t+τ for all τ ≥ 1. Therefore, Π̃† (oz|z) has increasing differences
along rilt for any l and t.

Combining the increasing differences along yilit and rilt for any l and t, I have showed that
Π̃† (oz|z) has increasing differences in {0, 1}2LT .
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D Supplemental Figures and Tables

Figure A2: Trend of U.S. Offshoring, 1995-2020
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Notes: This figure plots the time trends of U.S. offshore production and R&D activities from 1995 to 2019. The data is sourced
from the Bureau of Economic Analysis’s Survey of U.S. Direct Investment Abroad (USDIA), which gathers information on the
activities of U.S. multinational parent firms and their foreign affiliates. Panel (a) measures production offshoring, showing the
dollar value of goods supplied by foreign affiliates of U.S. parent firms and the fraction of sales made by these foreign affiliates
relative to the firm’s total sales. Panel (b) measures innovation offshoring, showing the dollar value of foreign R&D expenditure
by U.S. firms and the proportion of foreign R&D expenditure within the firm’s total worldwide R&D expenditure.

59



Figure A3: BRDIS Survey Questionnaire

Notes: This figure presents a snapshot of Question 2-11 from “Section 2: R&D Paid For by Your Company” in the original
Business R&D and Innovation Survey form. It lists 40 countries and regions, along with five residual categories: “Other
Europe,” “Other Latin America/OWH,” “Other Asia/Pacific,” “Other Middle East,” and “Other Africa.” These residual
categories collectively account for less than 5% of U.S. offshore R&D expenditure.
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Figure A4: OLS Coefficient Estimates for Two Facts—Industry Heterogeneity

Panel A. Broad Manufacturing Industries
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Notes: This figure presents coefficient estimates from equation (??), excluding the regional term xiRt, using subsamples by industry. Observations are at the firm-
country-year level. The outcome variable is the inverse hyperbolic sine (Ihs.) transformed R&D. The main regressor is the inverse hyperbolic sine (Ihs.) transformed
imports. Firm-year and country-year fixed effects are included. Panel (a) examines broad manufacturing industries at the three-digit NAICS code level. Panel (b)
examines narrow sub-industries within computer and electronics, based on six-digit NAICS codes. Standard errors are clustered at the firm level. 95% confidence
intervals are plotted as error bars. Coefficient estimates are rounded to four effective digits in accordance with Census data disclosure requirements.
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Figure A5: The Effect of Trump Tariffs on Offshoring—Excluding China
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Notes: This figure presents coefficient estimates from equation (5), excluding China from the sample. This is a variant of Figure
5. Each panel corresponds to a different outcome variable. Dummy variables capture the extensive margin, log values capture
the intensive margin, and the inverse hyperbolic sine (Ihs.) transformed values capture the combination of both margins. The
regressions include firm-country fixed effects, country-year fixed effects, and firm sales and employment as control variables.
Standard errors are clustered at the firm level. 90% and 95% confidence intervals are plotted as error bars. Coefficient estimates
and statistics are rounded to four effective digits in accordance with Census data disclosure requirements.
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Figure A6: The Effect of Trump Tariffs on Offshoring—Excluding Semiconductor Industry
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Notes: This figure presents coefficient estimates from equation (5), excluding the semiconductor industry (broadly identified
by NAICS code 3344) from the sample. This is a variant of Figure 5. Each panel corresponds to a different outcome variable.
Dummy variables capture the extensive margin, log values capture the intensive margin, and the inverse hyperbolic sine (Ihs.)
transformed values capture the combination of both margins. The regressions include firm-country fixed effects, country-year
fixed effects, and firm sales and employment as control variables. Standard errors are clustered at the firm level. 90% and
95% confidence intervals are plotted as error bars. Coefficient estimates and statistics are rounded to four effective digits in
accordance with Census data disclosure requirements.
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Figure A7: The Effect of Trump Tariffs on Offshoring—Treatment Based on Related Party
Imports

Panel A. Log Related-Party Import
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Notes: This figure presents coefficient estimates from equation (5), focusing exclusively on related-party imports. This is a
variant of Figure 5. The “Treatment” dummy in this figure equals one for firm-country pairs whose related-party trade was
affected by the Trump Tariffs. Each panel corresponds to a different outcome variable. Dummy variables capture the extensive
margin, and the inverse hyperbolic sine (Ihs.) transformed values capture the combination of both margins. The regressions
include firm-country fixed effects, country-year fixed effects, and firm sales and employment as control variables. Standard
errors are clustered at the firm level. 90% and 95% confidence intervals are plotted as error bars. Coefficient estimates and
statistics are rounded to four effective digits in accordance with Census data disclosure requirements.
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Figure A8: Simulated Effects of Bilateral Policy Shocks, By Country
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Notes: This figure presents the changes in production and innovation shares for each country under various counterfactual scenar-
ios. The production share for l is computed as

∑
i yil/

∑
il yil, and the innovation share is computed similarly as

∑
i ril/

∑
il ril.

Panel A shows how these shares adjust in response to increases in U.S. import tariffs on China, with tariff increases reflected
as percentage decreases in China’s offshoring potential (30%, 60%, 80%, 90%, and 100%). Panel B illustrates how these shares
shift when the sunk and fixed costs of producing in China rise by different amounts, ranging from 5 to 300 million dollars. The
sum of all countries, excluding China and the U.S., constitutes the ROW in Figure 8.
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Table A2: Sample Structure and Survey Frequency

Survey Frequency Number of Firms Fraction of Firms Fraction of Sales Fraction of Value Added

(1) (2) (3) (4)

1-2 27500 76.39 3.05 3.50

3-5 5000 13.89 7.39 8.17

6-9 2500 6.94 22.42 16.24

10-12 1400 3.89 67.14 72.09

Total 36000 100 100 100

Notes: This table summarizes the frequencies at which firms in my sample are surveyed. The firm sample is constructed at
the intersection of the BRDIS, LFTTD, and CMF/ASM datasets. The LFTTD and CMF cover the entire population of U.S.
firms, while the BRDIS and ASM cover representative samples. Since the focus is on the period from 2008 to 2019, a firm can
be sampled in at least one year and at most twelve years. Fractions are rounded to four effective digits, and firm counts are
rounded to the nearest hundreds, in accordance with Census data disclosure requirements.

66



Table A3: Multiple Offshoring Locations for Production and Innovation

Panel A. R&D Locations

Number of Foreign
R&D Locations (%)

Fraction of
Observations (%)

Fraction of Sales (%) Fraction of
Worldwide R&D (%)

Fraction of Offshore
R&D (%)

0 90.37 38.22 13.68 0
1 2.83 6.39 4.40 2.37
2-5 3.74 19.37 12.14 10.93
6-10 1.66 10.86 13.35 16.14

Above 10 1.40 25.16 56.44 70.56
Total 100 100 100 100

Panel B. Import Locations

Number of Import
Origins

Fraction of
Observations (%)

Fraction of Sales (%) Fraction of Import
Value (%)

0 16.60 0.52 0
1 13.18 0.88 0.09

2-10 48.26 14.18 4.97
11-20 14.39 29.10 19.55

Above 20 7.58 55.31 75.38
Total 100 100 100

Notes: This table summarizes the distributions of firms based on the number of foreign innovation and import locations, using
data from 2008 to 2019. Observations are at the firm-year level. Panel A reports the fractions of observations, sales, worldwide
R&D expenditure, and foreign R&D expenditure for firm groups categorized by the number of foreign countries in which they
perform R&D. Panel B reports the fractions of observations, sales, and import value for firm groups categorized by the number
of origin countries they import from. Fractions are rounded to four effective digits in accordance with Census data disclosure
requirements.
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Table A4: OLS Coefficient Estimates for Two Facts—Excluding Regional Terms

Panel A. Regress R&D on Import

R&D Dummy R&D Dummy Log R&D Log R&D Ihs. R&D
(1) (2) (3) (4) (5)

Import Dummy 0.0196*** 0.322***
(0.000697) (0.117)

Log Import 0.0134*** 0.211***
(0.000448) (0.0167)

Ihs. Import 0.0218***
(0.000546)

N 499000 57000 4100 3400 499000
R-squared 0.392 0.478 0.569 0.595 0.419
Firm FE Yes Yes Yes Yes Yes
Country-Industry FE Yes Yes Yes Yes Yes

Panel B. Regress Import on R&D

Import Dummy Import Dummy Log Import Log Import Ihs. Import
(1) (2) (3) (4) (5)

R&D Dummy 0.210*** 1.755***
(0.00675) (0.0529)

Log R&D 0.00711*** 0.309***
(0.00261) (0.0254)

Ihs. R&D 0.578***
(0.0118)

N 499000 4100 57000 3400 499000
R-squared 0.420 0.612 0.475 0.661 0.470
Firm FE Yes Yes Yes Yes Yes
Country-Industry FE Yes Yes Yes Yes Yes

Notes: This table presents coefficient estimates from equation (1) using data from 2017, as a variant of Table 4. The regional
term xiR is removed to test the robustness of Fact 1. Panel A regresses R&D measures on import measures, while Panel B does
the opposite. Observations are at the firm-country level. Dummy variables capture the extensive margin, log values capture the
intensive margin, and the inverse hyperbolic sine (Ihs.) transformed values capture the combination of both margins. Industries
are classified by 3-digit NAICS codes. Standard errors are clustered at the firm level and reported in parentheses. Coefficient
estimates and regression statistics are rounded to four effective digits, and the number of observations is rounded to the nearest
thousand, in accordance with Census data disclosure requirements. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table A5: OLS Coefficient Estimates for Two Facts—Panel Version

Panel A. Regress R&D on Import
R&D Dummy R&D Dummy Log R&D Log R&D Ihs. R&D

(1) (2) (3) (4) (5)

Import Dummy 0.0180*** 0.391***
(0.000844) (0.0625)

Region Import Dummy 0.00169*** -0.0482
(0.000261) (0.0682)

Log Import 0.0134*** 0.208***
(0.000539) (0.0134)

Log Region Import 0.00100*** 0.00734
(0.000376) (0.0147)

Ihs. Import 0.0213***
(0.000862)

Ihs. Region Import 0.000927***
(0.000200)

N 3387000 400000 39000 30000 3387000
R-squared 0.389 0.483 0.568 0.593 0.414
Firm-Year FE Yes Yes Yes Yes Yes
Country-Industry-Year FE Yes Yes Yes Yes Yes

Panel B. Regress Import on R&D
Import Dummy Import Dummy Log Import Log Import Ihs. Import

(1) (2) (3) (4) (5)

R&D Dummy 0.171*** 1.639***
(0.00652) (0.0371)

Region R&D Dummy 0.0442*** 0.171***
(0.00367) (0.0298)

Log R&D 0.00838*** 0.296***
(0.00172) (0.0190)

Log Region R&D 0.00228 0.0431*
(0.00166) (0.0229)

Ihs. R&D 0.502***
(0.0121)

Ihs. Region R&D 0.0968***
(0.00655)

N 3387000 25500 536000 22000 3387000
R-squared 0.449 0.637 0.467 0.689 0.501
Firm-Year FE Yes Yes Yes Yes Yes
Country-Industry-Year FE Yes Yes Yes Yes Yes

Notes: This table presents coefficient estimates from the panel version of equation (1):
yilt = β1 · xilt + β2 · xiRt + γit + γjlt + εilt (2)

using data from 2008 to 2019, as a variant of Table 4. Panel A regresses R&D measures on import measures, while Panel B
does the opposite. Observations are at the firm-country-year level. “Region Import” and “Region R&D” refer to the firm’s total
import value and R&D expenditure in all countries of the host region, excluding the focal host country itself. Standard errors
are clustered at the firm level and reported in parentheses. Coefficient estimates and regression statistics are rounded to four
effective digits, and the number of observations is rounded to the nearest thousand, in accordance with Census data disclosure
requirements. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table A6: OLS Coefficient Estimates for Two Facts—Distinguishing Between Related Party
and Arm’s Length Imports, Panel Version

R&D
Dummy

R&D
Dummy Log R&D Log R&D Ihs. R&D Ihs. R&D

(1) (2) (3) (4) (5) (6)

Arm’s Length

Import Dummy 0.00401*** 0.116** 0.0206***
(0.000510) (0.0492) (0.00427)

Region Import Dummy 0.000158 -0.0650 0.00114
(0.000245) (0.0618) (0.00189)

Related Party

Import Dummy 0.0692*** 0.661*** 0.555***
(0.00248) (0.0483) (0.0206)

Region Import Dummy 0.00113** 0.0572 0.0138***
(0.000523) (0.0514) (0.00408)

Arm’s Length

Log Import 0.00254*** 0.0284** 0.0256***
(0.000857) (0.0139) (0.00710)

Log Region Import 0.0000565 -0.0282 -0.000212
(0.00117) (0.0174) (0.0101)

Related Party

Log Import 0.0212*** 0.214*** 0.203***
(0.00105) (0.0151) (0.0103)

Log Region Import 0.000702 0.00731 0.0109
(0.000826) (0.0147) (0.00794)

N 3387000 128000 39500 21000 3387000 128000
R-squared 0.402 0.567 0.573 0.611 0.422 0.584
Firm-Year FE Yes Yes Yes Yes Yes Yes
Country-Industry-Year FE Yes Yes Yes Yes Yes Yes

Notes: This table presents coefficient estimates from the panel version of equation (1) and distinguishes between related-party
and arm’s length imports:

R&Dilt = βR
1 · ImpRilt + βA

1 · ImpAilt + βR
2 · ImpRiRt + βA

2 · ImpAiRt + γit + γjlt + εilt,

using data from 2008 to 2019, as a variant of Panel A of Table 4. The superscript “R” refers to related-party imports, and “A”
refers to arm’s length imports. “Region Import” refers to the firm’s total import value and R&D expenditure in all countries
of the host region, excluding the focal host country itself. Standard errors are clustered at the firm level and reported in
parentheses. Coefficient estimates and regression statistics are rounded to four effective digits, and the number of observations
is rounded to the nearest thousand, in accordance with Census data disclosure requirements. * p < 0.1, ** p < 0.05, ***
p < 0.01.
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Table A7: Testing Parallel Trend Assumption

R&D Growth Rate T-test

(1) (2)

Control 0.0528*** Null: Control - Treat =0

(8.04)

Treat 0.0558*** F-statistic: 0.08

(7.01)

N 12500 Prob>F: 0.7744

Notes: This table tests the parallel trend assumption for the Trump Tariffs quasi-experiment. Column (1) presents coefficient
estimates from regressing the growth rate of R&D on dummies for the control and treated groups prior to and including the
year 2017. Observations are at the firm-country-year level, with t-statistics reported in parentheses. Column (2) shows the
results of the T-test, where the null hypothesis states that there is no difference in the growth rate of R&D between the two
groups.

Table A8: Instrumental Strategy Coefficient Estimates—Using Related Party Imports

Ihs. Related
Party Import Ihs. R&D Ihs. R&D R&D Dummy R&D Dummy

(1) (2) (3) (4) (5)

Ihs. Related-Party Import 0.0632*** 0.0907*** 0.00753*** 0.0109**
(0.00249) (0.0349) (0.000284) (0.00439)

TR
ilt -2.230***

(0.267)

Method OLS OLS IV OLS IV
1st-stage F 69.82
N 954000 954000 954000 954000 954000
Firm-Year FE Yes Yes Yes Yes Yes
Country-Year FE Yes Yes Yes Yes Yes

Notes: This table presents coefficient estimates for the 2SLS specification in equation (4), focusing exclusively on related-party
imports. The updated tariff rate TR

ilt is constructed using the firm’s initial import product bundle from related parties and
serves the instrument. Observations are at the firm-country-year level. Dummy variables capture the extensive margin, and
the inverse hyperbolic sine (Ihs.) transformed values capture the combination of both the extensive and intensive margins.
Standard errors are clustered at the firm level and reported in parentheses. Coefficient estimates and regression statistics are
rounded to four effective digits, and the number of observations is rounded to the nearest thousand, in accordance with Census
data disclosure requirements. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table A9: Difference-in-Differences Coefficient Estimates—Adding Regional Treatment

Log Import Ihs. R&D R&D Dummy Log R&D

(1) (2) (3) (4)

Treat × Post -0.0976*** -0.0852** -0.0113** -0.127*

(0.0254) (0.0428) (0.00557) (0.0652)

TreatNeighbor × Post -0.0293 -0.0340 -0.00657 -0.0833

(0.0263) (0.0408) (0.00536) (0.0613)

N 185000 185000 185000 16500

R-squared 0.890 0.877 0.838 0.894

Firm-Country FE Yes Yes Yes Yes

Country-Year FE Yes Yes Yes Yes

Notes: This table presents coefficient estimates from equation (6) with an additional regressor, “TreatNeighbor” interacted with
“Post,” as a variant of the first row in Table 6:

yilt = β · Treatil × Postt + TreatNeighboril · Postt + γil + γlt + zit + εilt.

The dummy variable “Treat” equals one for firm-country pairs affected by the Trump Tariffs. The ”TreatNeighbor” dummy
equals one if the firm’s tariff rate in neighboring countries within the host region (excluding the focal host country itself) was
affected by the Trump Tariffs. The “Post” dummy equals one for the year 2019 and zero for the years 2014-2017. Dummy vari-
ables capture the extensive margin, log values capture the intensive margin, and the inverse hyperbolic sine (Ihs.) transformed
values capture the combination of both margins. Standard errors are clustered at the firm level and reported in parentheses.
Coefficient estimates and regression statistics are rounded to four effective digits, and the number of observations is rounded
to the nearest thousand, in accordance with Census data disclosure requirements. * p < 0.1, ** p < 0.05, *** p < 0.01. The
coefficient estimates suggest that the direct treatment effect (Treatil) is still significantly negative as in Table 6; the indirect
treatment effect (TreatNeighboril) is negative and of nontrivial magnitude despite its statistical insignificance.

Table A10: Transition of Offshoring Status Across Years

Panel A. Transition of Import Status

100× Pr(Importilt+1 = 0) 100× Pr(Importilt+1 = 1)

Importilt = 0 93.98 6.02

Importilt = 1 17.69 82.31

Panel B. Transition of R&D Status

100× Pr(R&Dilt+1 = 0) 100× Pr(R&Dilt+1 = 1)

R&Dilt = 0 99.55 0.45

R&Dilt = 1 12.92 87.08

Notes: This table presents the transition probabilities of firms’ R&D and import statuses. Calculations are based on panel data
with firm-country-year level observations. Rows represent the status in the current year, while columns represent the status in
the next year. Data on import is from the LFTTD, and data on R&D is from the BRDIS. Probabilities are rounded to four
effective digits in accordance with the Census data disclosure requirements.
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Table A11: Validation of Estimates of Production Offshoring Potentials

Log Number of Importing Firms

(1) (2) (3)

Log Production Offshoring
Potential Estimate, ln θ̂lt 0.776*** 0.764*** 0.362***

(0.0233) (0.0216) (0.0751)

N 450 450 450

FE No FEs Year FEs Country FEs

Notes: This table presents coefficient estimates from regressing the log number of importing firms on the country’s log estimated
production offshoring potential, ln θ̂lt. Observations are at the country-year level. The regressor, ln θ̂lt, is obtained from
estimating equation (9) using OLS. Coefficient estimates are rounded to four effective digits, and the number of observations
is rounded to the nearest hundred, in accordance with Census data disclosure requirements. Standard errors are reported in
parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.
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