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Abstract 
 

The rise of U.S. inflation in 2021 and 2022 and its partial subsiding have sparked debates about 
the relative role of supply and demand factors. The initial surge surprised many macroeconomists 
despite the unprecedented jump in money growth in 2020-21. We find that the relationship 
between consumption and the theoretically based Divisia M3 measure of money (velocity) can be 
well modeled both in the short- and long-runs. We use the estimated long-run relationship to 
calculate the deviation of actual velocity from its long-run equilibrium and incorporate it into a P-
Star framework. Our model of velocity significantly improves the performance of the P-Star model 
relative to using a one-sided HP filter to calculate trend velocity as, for example, used by Belongia 
and Ireland (2015, 2017). We also include a global supply pressures index in the model and find 
that recent movements in U.S. inflation largely owed to aggregate demand driven macroeconomic 
factors that are tracked by Divisia money with a smaller role played by supply factors.  
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1. Introduction 
 

The rise and partial ebbing of U.S. inflation since the COVID Recession (Figure 1) has 

spawned studies assessing the roles played by supply chain disruptions and excess demand growth. 

Some analysts argue that supply chain disruptions can largely account for the recent swings in 

inflation. However, most analysts argue that the combination of supply constraints and a 

strengthening of aggregate demand from stimulatory monetary and fiscal policy actions had 

created excessive upward pressures on inflation (see Blanchard, et al., 2022; Bordo and Levy, 

2022, Bolhuis, et al., 2022; DeSoyres et al., 2022, and Farie-e-Castro, 2025). Other studies 

decompose these influences using VARs, such as Gordon and Clark (2023), Hall et al. (2023), and 

Liu and Nguyen (2023) or use model-based estimates (Bernanke and Blanchard, 2025, and Koch 

and Noureldin, 2023) or model-based calibrations (di Giovanni, et al., 2022). Beyond food and 

energy cost shocks, the latter studies consider shocks emanating from either supply chain 

disruptions or COVID-related shifts in the composition of demand that spawned imbalances 

between supply and demand.  

The view that supply shocks alone cannot explain U.S. inflation is consistent with nominal 

GDP exceeding its pre-COVID trend and core PCE inflation exceeding a 2 percent path since late 

2021 (Bordo and Duca, 2025). And while the inflation surge in 2020-21 coincided with the rise in 

the Federal Reserve Bank of New York’s (FRBNY) global index of supply pressures (Figure 1), 

the price level did not fully return to its pre-pandemic path consistent with 2 percent inflation after 

supply pressures fell back to their pre-pandemic range. Actual nominal GDP growth and inflation 

imply that aggregate demand contributed to inflation as the pandemic unwound.  

Although broad Divisia money growth surged in 2020 (Figure 2) many macro-economists 

ignored this signal because of perceived instability in the demand for conventionally defined 
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Figure 1: U.S. Inflation and Supply Chain Pressures Post-GFC 

(Sources: BEA and FRBNY) 
 

monetary aggregates.1 By weakening the link between money (𝑀𝑀) and GDP, such instability 

undermined the link between money and inflation. Hallman, et al.’s (1991) original P-Star model 

of inflation rearranges the quantity theory of money equation, 𝑀𝑀𝑀𝑀 = 𝑃𝑃𝑃𝑃, where 𝑃𝑃 is real income 

and 𝑃𝑃 is the price level, to infer the long-run price level, 𝑃𝑃∗ = 𝑀𝑀𝑀𝑀∗/𝑃𝑃∗, where 𝑃𝑃∗ is long-run or 

trend real income, 𝑀𝑀 is a monetary aggregate (originally simple-sum M2), and 𝑀𝑀∗ is the long-run 

equilibrium velocity of money toward which velocity gradually converges (error-corrects). In this 

framework, inflation depends not only on its own lags, but also on the price gap, the extent to 

which the price level deviates from its long-run value.  The price gap can be decomposed into the 

gap between long-run equilibrium velocity and its current level and the cyclical component of real 

income. That is, ln (𝑃𝑃∗/𝑃𝑃) = ln (𝑀𝑀∗/𝑀𝑀) + ln (𝑃𝑃/𝑃𝑃∗), where the first term is the velocity gap and 

 

 
1 Despite similar Fed QE of $4 Trillion in the Great and COVID Recessions, Divisia money growth and inflation were 
much slower following the Great Recession when banks were impaired and less fiscal stimulus was provided.  
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Figure 2: U.S. Broad Divisia Money Growth Surges in the 

COVID-19 Recession in Sharp Contrast to the Great Recession 
(Sources: Center for Financial Stability and authors’ calculations.) 

 
the latter is the cyclical component of real income.   

However, if long-run velocity is unstable or difficult to model, the velocity gap will be less 

informative, thereby undermining the usefulness of the P-Star approach. Belongia and Ireland 

(2015, 2017) estimate P-Star models for inflation and nominal income using a one-sided (i.e., real-

time) HP filter to model trend velocity.2  An innovative aspect of their work is that they use Divisia 

monetary aggregates rather than conventional money measures to define velocity. Building on 

Bordo and Duca’s (2025) analysis of GDP measures of velocity, we employ a small-scale error-

correction model to estimate trend consumption velocity and incorporate the resulting velocity gap 

into a P-Star model of PCE inflation.3 Our approach focusses on the percentage fees (loads) for 

 
2 Cronin (2018) employs the standard two-sided HP filter.  Other recent studies based on the P-Star framework include 
El Shagi and Giesen (2013), El Shagi, et al. (2015), Moosa and Al-Nakeeb (2020), and Ireland (2023, 2024). 
3 Divisia monetary aggregates were developed by Barnett (1978, 1980), Barnett and Spindt (1982), and Barnett, et al. 
(1984). See Anderson and Jones (2011) and Barnett, et al. (2013) for overviews of U.S. Divisia data and see Barnett 
(2011), Barnett and Chauvet (2012), and Anderson et al. (2015) regarding the empirical significance of these measures.    
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buying or selling mutual funds, declines in which in turn led to a permanent decline in the demand 

for money in the late 1980s and 1990s —especially small time deposits. (Duca, 2000; Bordo and 

Duca, 2025). This caused an upward level shift in velocity that led the P-Star model to underpredict 

inflation, discrediting simple-sum M2 versions of this framework (see Becsi and Duca, 1994 and 

Ireland, 2022 and 2023). Simple sum monetary aggregates assume perfect substitutability between 

their components implying that they may be distorted by optimal portfolio reallocation in response 

to interest rate changes and moreover, M2 may be too narrow to capture some of the substitutions 

involved (see Barnett, 1982 and Barnett, et al., 2013).  

We find that the consumption velocity of Divisia M3 has a stable long-run relationship 

with the mutual fund cost variable we employ, while controlling for the effects of the Commodity 

Futures Modernization Act (CFMA). We accomplish the latter by estimating a broken constant 

version of the standard cointegration framework from Johansen et al. (2000). We then use the 

estimated long-run relationship to calculate the velocity gap out-of-sample, which we incorporate 

into a P-Star framework from 2013 to 2024. Following Ireland (2024), we center our analysis on 

PCE-based measures of inflation. We add a role for supply pressures using an index from the 

Federal Reserve Bank of New York (FRBNY), and we add dummies for extreme declines in 

energy prices and for 2020 to account for the unprecedented scale of the pandemic shock.  

As in Bordo and Duca (2025), the acute initial phase of the pandemic is associated with a 

very steep drop in Divisia M3’s velocity reflecting both the scale of the real economic shock and 

the massive money growth shown in Figure 2. Divisia M3’s level abruptly shifted upwards relative 

to its pre-pandemic trend and its annual growth rate was over 18% between 2020Q2 and 2021Q1 

and was over 9% for the following three quarters. Divisia’s annual growth fell rapidly during 2022 

and turned negative in 2023 as the Fed tightened monetary policy. Divisia M3’s velocity 
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correspondingly declined sharply in 2020Q2, rebounded sharply in 2020Q3, and then gradually 

rose, surpassing its 2020Q1 level in mid-2023.  It took a while for inflation to reach its peak and 

largely ebb as shown in Figure 1. As COVID-19 waned, much pent-up aggregate demand was 

released that bolstered inflation due to both supply- and demand-side factors in 2021 to early 2023, 

reflected in the unwinding of earlier pandemic-related declines in velocity. The disinflationary 

impact of monetary policy tightening took hold starting in early 2023. 

We find that the P-Star model is able to explain much of the increase and subsequent ebbing 

of inflation in terms of the deviation of velocity from its long-run equilibrium level even after 

controlling for supply pressures. In fact, we find that while the estimated contribution of the index 

of global supply pressure to the temporary run-up of inflation is notable, more of it stems from 

aggregate demand pressures reflected by the price and velocity gap variables from the P-star 

model.4 Finally, we show that our cointegration model of velocity significantly enhances the 

performance of the P-Star model relative to using a one-sided HP filter to calculate trend velocity. 

The paper is organized as follows. Section 2 discusses Divisia monetary aggregates and 

presents our empirical specification of consumption velocity. Section 3 presents results from 

estimating velocity models. Section 4 lays out our P-Star model, which models core and overall 

PCE inflation from 2013 to 2024. Those models track aggregate demand pressures by 

incorporating detrended real consumption and the gaps between velocity and its estimated long-

run equilibrium value, where the latter uses velocity coefficients estimated through 2012 to gauge 

equilibrium velocity since 2013. While we find that global supply chain pressures explain some of 

the large swings in core inflation since 2020, our results imply that swings in aggregate demand 

pressures driven by money growth played a larger role. Section 5 concludes by discussing  

 
4 Using VAR models, Hall et al. (2023) find that the main drivers of inflation for the U.S. were simple-sum M2 and 
large increases in government spending. 
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our findings in a broader context. 

2. The Demand for Divisia Monetary Services 

 This section begins with a brief comparison of Divisia versus simple-sum measures of 

money before discussing the determinants of the demand for Divisia monetary services. Based on  

this discussion, Section 3 specifies estimable models of the velocity of Divisia money. 

2.1 Broad Divisia Versus Narrow Divisia and Simple-Sum Measures of Money 

Conventional (simple-sum) monetary aggregates implicitly assume that different monetary 

components are perfect substitutes by adding them up when aggregating. This is inconsistent with 

empirical estimates of elasticities of substitution from demand models for the underlying 

components (e.g., Jones et al. (2008a,b), Fleissig and Jones (2015), Jadidzadeh and Serletis (2019), 

and Xu and Serletis (2022)). Divisia monetary measures do not make implicit assumptions about 

substitution elasticities between the monetary assets that they include. However, the oft stated 

ability of Divisia aggregates to internalize pure substitution effects between its components does 

require weak separability without which demand for the aggregate can become unstable (see 

Barnett, 1982). Jones, et al. (2005) found that separability tests favored broad over narrow 

aggregates when the monetary assets were adjusted for retail sweep accounts but not for 

commercial sweep accounts. Jadidzadeh and Serletis (2019) tested various separability structures 

within the Divisia M4 monetary aggregate published by the Center for Financial Stability (CFS), 

but rejected all of them, leading them to favor the broadest available monetary aggregate. 

Hjertstrand, et al. (2016) found that M1 and a broad aggregate similar to M4 were weakly separable 

from consumption and leisure, but the evidence for M2 and M3 was weaker. We focus on Divisia  

M3, noting that movements in it are very similar to CFS’s Divisia M4- and Divisia M4.5  

 
5 Barnett et al. (2013) describes these data. Divisia M4- adds commercial paper to Divisia M3. To Divisia M4-, Divisia 
M4 also adds Treasury bills. For corresponding historical Divisia series, see Anderson et al. (2019). 
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The demand for Divisia money can be affected by changes in the liquidity of assets outside  

of it. This limitation suggests that broader Divisia indexes (e.g., M3) may be preferable to M2, 

because they are better able to internalize shifts between liquidity provided by insured deposits in 

M2 vis a vis uninsured liabilities issued by banks (e.g., large time deposits), institutional money 

funds, and repurchase agreements (RPs) outside of M2.6 While the velocity of broad Divisia 

money is prone to shifts in the liquidity of assets not spanned by them, the factors driving those 

changes are less numerous than for Divisia M2 and are feasible to track using Divisia M3 (Bordo 

and Duca, 2025). Indeed, consumption velocity (nominal PCE divided by money) is more mean 

reverting for Divisia M3 than for simple sum or Divisia M2 over the past four decades (Figure 3). 

2.2 Pre-Pandemic Long-Run Demand for Divisia Monetary Services 

The long-run demand for money depends on overall transactions, as well as factors altering 

the relative liquidity of money versus that of other assets. We now provide an overview of the 

determinants of money demand that we include in our error-correction model of velocity. Our 

focus on stock loads and CFMA is very similar to Bordo and Duca (2025), although we use 

consumption as the scale variable rather than GDP and consider other opportunity cost variables. 

2.2.1 Tracking the Transactions Demand for Divisia M3 

Since Friedman (1956) redefined the quantity theory of money by replacing overall  

transactions with nominal GDP, most money demand models have tracked the transactions  

demand for money with nominal GDP. However, for five reasons and in line with Ireland (2024), 

we use a version of the P-Star model that relates PCE inflation to the gap between current and 

long-run consumption velocity rather than GDP velocity. First, we focus on modeling PCE  

measures of inflation, which the Federal Reserve monitors and targets. Second, consistent with 

 
6 Commercial sweep programs also transferred funds from demand deposit accounts to mutual funds and offshore and 
overnight instruments; See, for further discussion, Jones et al. (2005) and Cynamon et al. (2006). 
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Figure 3: Since the mid-1980s, the Consumption Velocity of Broader Divisia Money (M3) 

Is More Stable than that of Simple-Sum and Divisia M2 in the U.S. 
(Sources: CFS, Federal Reserve, and authors’ calculations. Shaded areas are NBER recessions.) 

 
Friedman (1956, 1957) and later empirical models of money demand, the demand for money is 

more linked to permanent income and consumption than to GDP, and the Life-Cycle/Permanent 

Income Hypotheses suggest that PCE can proxy for permanent income (Cochrane, 1994). Third, 

the bulk of monetary assets within the Divisia aggregates are held by households, whose main 

spending is tracked by PCE. These reasons suggest that consumption velocity (𝑃𝑃𝑃𝑃𝑃𝑃/𝑀𝑀) should be 

less variable than GDP velocity (𝐺𝐺𝐺𝐺𝑃𝑃/𝑀𝑀), which is consistent with a lower standard deviation of 

consumption versus GDP velocity. Fourth, large swings in net exports are associated with nominal 

spending and output diverging. If spending is more pertinent to money demand than output (GDP), 

then consumption may better track the transactions demand for money. Fifth, and likely reflecting 

the impact of the second through fourth of these considerations when we use PCE instead of GDP, 

we do not need any non-COVID short-run shock variables in our cointegration models to avoid  

serial correlation in the residuals.   
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2.2.2 Factors Affecting the Liquidity Provided by Assets Not Covered by Divisia Measures 
 

The literature on Divisia indexes tends to overlook how and why the demand for broad  

indexes can shift in the long run and vary in the short run owing to factors other than income 

(consumption) and user costs or interest rates. We show that by addressing these issues Divisia 

M3 can be useful in tracking long-term inflation. In doing so, our analysis helps address the 

skepticism about tracking money growth in light of past instability in the demand for simple-sum 

monetary aggregates such as M2. 

Our specifications of the demand for monetary services from liquid assets emphasizes two 

major factors that shift the demand between conventional liquid assets, and assets that traditionally 

have been viewed as less liquid. The first is the cost for the marginal agent holding money of 

shifting between monetary assets and stocks. The bulk of M2 and M3 assets are held by middle- 

and upper-middle income households, for whom stock mutual funds have been the main vehicle 

to hold a diversified portfolio of stocks (Duca, 2000). Lower proportional transfer costs reduce 

money demand in contrast to the implications of the overly stylized Baumol-Tobin framework (see 

Brunner and Meltzer, 1967, and Duca, 2000). Following Anderson et al. (2017) who extend Duca’s 

(2000) analysis of simple-sum M2 velocity, we assume the transactions costs of switching between 

monetary assets and stock mutual funds is proportional to the average load fee for purchasing or 

selling a stock mutual fund in a one-year horizon (SLoad), based on extending Anderson, et al.’s 

(2017) series. This variable is discussed at length in Anderson, et al. (2017) and in Bordo and Duca 

(2025). The data we use are identical to those calculated by the latter. As these costs fall, the  

liquidity of stock funds rises which lowers the demand for Divisia indexes that omit such assets.   

 The second major factor that affected the demand for Divisia indexes is a financial 

regulation that induced changes in financial intermediation by nonbank financial intermediaries 
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(“shadow banks”) that issue higher-liquidity short-term debt to fund lower-liquidity (often long 

maturity) assets. The passage of the Commodity Futures Modernization Act (CFMA) in late 2000 

made it feasible for credit default swaps (CDS) to be widely used to reduce the tail risk of assets 

(e.g., non-government issued MBS), after which CDS issuance became notable (Duca and Ling, 

2020).7 Such enhancements allowed many nonbanks (e.g., conduits, investment banks, and special 

investment vehicles) to use derivatives to protect their portfolios from tail risk and helped them 

obtain investment grade ratings on the short-term debt that they used to fund investments. In turn, 

the investment grade short-term debt was purchased by banks and institutional money market 

mutual funds, the latter of which tripled their liabilities between the passage of CFMA and mid-

2009. In periods of low financial market stress, CFMA also induced increased repo activity, as 

formerly ineligible paper became acceptable as collateral, thereby expanding the pool of assets 

used in repurchase agreements and the monetary services they provide. In seven years, institutional 

money funds and security broker RPs soared from 13 percent of M3 (OECD) to 25 percent until 

Lehman failed. By inducing large increases in highly liquid institutional money funds and RPs, 

CFMA was associated with an upward level shift in the broader Divisa aggregates and a 

corresponding downward shift in their velocities starting in 2001 when the law took effect. This is 

evident in the sharp jump in CDS issuance in early 2001 and likely reflects that the law’s passage 

was highly anticipated in 2000Q4, when the bill passed the House by a large majority and by 

unanimous consent by the U.S. Senate. We account for CFMA by allowing for a break in the  

constant in a model of long-run velocity coinciding with the passage of CFMA as detailed below. 

2.2.3 Opportunity Cost of Money 

Monetary aggregation theory builds upon the user cost of monetary assets; see Barnett  

 
7 As stressed by Bolton and Oehmke (2015) and Stout (2011), CFMA made CDS contracts enforceable nationwide 
and gave them priority over other claims in bankruptcy.    
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(1978) and Donovan (1978). From the user cost formula, the opportunity cost of the monetary 

services derived from holding a particular asset corresponds to the foregone interest from holding 

that asset relative to a non-monetary “benchmark” asset. The growth rate of a Divisia index is the 

average expenditure share weighted sum of the growth rates of its component monetary assets, 

where the expenditure on each monetary asset depends on its user cost. Thus, monetary asset user 

costs are a key feature of how Divisia aggregates are computed. In addition, money demand models 

of Divisia aggregates often feature an opportunity cost variable. Some authors, such as Belongia 

and Ireland (2016, 2018, 2019), emphasize the use of aggregation-theoretic dual user cost 

measures, such as those produced by CFS, to model Divisia money demand.8  

Others, however, use a standard interest rate as an opportunity cost variable.  Barnett, et al. 

(2022), for example, estimate cointegration relationships between money, output, interest rates, 

and real effective exchange rates for several countries including the U.S. They note that short-term 

interest rates are typically used to model narrow money measures, but long-term interest rates are 

typically used for broad money, such as Divisia M3 explaining that “[t]he conventional rationale 

for this choice is that many components of broad money, such as time deposits, are associated with 

long-term interest rates.” Following this reasoning, we assess both the Divisia M3 dual user cost  

index (Usercost) and the ten-year Treasury yield (Bond) as additional variables in our models.9 As  

shown in Figure 4, the Usercost series is more variable and mean reverting than the slower moving  

stock load series, which experiences substantial declines in the 1980s and 1990s. 

The zero lower bound on short-term interest rates binds in much of the latter part of our 

sample (2008-2015 and 2020-21), which by compressing user costs to a low positive range, could  

 
8 See Bissoondeeal et al (2010) and Binner et al. (2025) for applications to the UK. Fleissig et al. (2023) analyze the 
Euro area. 
9 Chen and Valcarcel (2024) test for cointegration between the velocity of Divisia and simple sum monetary aggregates 
and either the 3-month Treasury rate or the dual user costs for Divisia money; See also Chowdhury and Serletis (2024). 
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complicate the interpretation of dual user costs over those periods. Mattson and Valcarcel (2016) 

show that the fall of the federal funds rate “likely passed through to the user costs of many of the 

assets” in Divisia M4 resulting in “unprecedented compression in user costs” and to convergence 

between Divisia and simple-sum M4 starting in 2009. Nevertheless, the dual user cost does not hit 

the zero lower bound for any of the CFS Divisia measures (Chen and Valcarcel, 2024).10  

 
Figure 4: Stock Fund Loads and the CFS Measure of Divisia M3 User Cost 

(Sources: CFS and Bordo and Duca, 2025) 
 

2.3 Modelling the Consumption Velocity of Divisia M3 

Our analysis focuses on the consumption velocity of CFS’s Divisia M3 aggregate, which  

measures the liquidity services from the components of the Federal Reserve’s simple-sum M2  

aggregate as well as from large time deposits, institutional money market mutual funds, and 

repurchase agreements (RPs). The Federal Reserve’s simple sum M3 aggregate, which was 

 
10 See also Brill, et al. (2021) for analysis of the Euro area.    
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published through early 2006, added institutional money funds, total large time deposits, total 

repurchase agreements and total Eurodollar deposits to M2; making its components roughly 

comparable, but not identical, to CFS’s Divisia M3 measure. As Bordo and Duca (2025) stress, 

Divisia M3 helps internalize substitution between the liquidity provided by M2 and non-M2 

liabilities, where the latter help track shifts in the role of liquidity provided by instruments funding 

the shadow banking sector. Of the three broad Divisia measures (M3, M4-, and M4) constructed 

by CFS, Bordo and Duca (2025) were slightly better able to track the GDP velocity of Divisia M3.  

 The preceding discussion implies that the long-run demand for the log of real Divisia M3 

(𝐿𝐿𝐺𝐺𝑀𝑀), takes the form:  

𝐿𝐿𝐺𝐺𝑀𝑀∗ = 𝛾𝛾0 + 𝛾𝛾1𝑃𝑃𝐶𝐶𝑀𝑀𝐶𝐶 + 𝛾𝛾2𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 + 𝛾𝛾3𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃 + 𝛾𝛾4𝐿𝐿𝐿𝐿𝑃𝑃    (1) 

where 𝑃𝑃𝐶𝐶𝑀𝑀𝐶𝐶 is a level shift dummy equal to one following passage of CFMA and zero for earlier 

periods. The remaining variables are the logs of the stock load variable (𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿), real 

consumption (𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃), and the opportunity cost (𝐿𝐿𝐿𝐿𝑃𝑃), which is either the long-term bond yield or 

the dual user cost index. For consistency, Divisia M3 should be converted to real terms using the 

PCE deflator. As discussed above, CFMA was associated with increased money holdings implying 

that 𝛾𝛾1 > 0.  Higher transfer costs should increase money demand implying that 𝛾𝛾2 > 0 by 

reducing the liquidity of assets outside of Divisia M3 and higher opportunity costs are expected to 

reduce money demand implying 𝛾𝛾4 < 0. Finally, the elasticity of money demand with respect to 

consumption, 𝛾𝛾3, should be positive. For later reference, omitting the opportunity cost variable 

results in the simplified expression: 

𝐿𝐿𝐺𝐺𝑀𝑀∗ = 𝛾𝛾0 + 𝛾𝛾1𝑃𝑃𝐶𝐶𝑀𝑀𝐶𝐶 + 𝛾𝛾2𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 + 𝛾𝛾3𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃     (1’) 

If the consumption elasticity of Divisia money demand is unity, 𝛾𝛾3 = 1, (as Bordo and Duca (2025) 

impose for GDP velocity), then eqs. (1) and (1’) can be rearranged into corresponding models of  
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long-run consumption velocity (in logs): 

   𝐿𝐿𝑀𝑀∗ = 𝜃𝜃0 + 𝜃𝜃1𝑃𝑃𝐶𝐶𝑀𝑀𝐶𝐶 + 𝜃𝜃2𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 + 𝜃𝜃3𝐿𝐿𝐿𝐿𝑃𝑃     (2) 

and 
 
𝐿𝐿𝑀𝑀∗ = 𝜃𝜃0 + 𝜃𝜃1𝑃𝑃𝐶𝐶𝑀𝑀𝐶𝐶 + 𝜃𝜃2𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿       (2’) 

respectively, since 𝐿𝐿𝑀𝑀 = 𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃 − 𝐿𝐿𝐺𝐺𝑀𝑀. Assuming that CFMA bolstered Divisia M3, as argued 

earlier, then it would have correspondingly lowered velocity implying that 𝜃𝜃1 < 0. Previous 

arguments likewise imply that 𝜃𝜃2 < 0 (higher transfer costs raise money demand and hence lower 

velocity) and 𝜃𝜃3 > 0 (higher opportunity costs lower money demand and hence increase velocity).  

We posit that velocity (real money) adjusts gradually to the deviation of it from its long-

run equilibrium, 𝐿𝐿𝑀𝑀𝑡𝑡 − 𝐿𝐿𝑀𝑀𝑡𝑡
∗ (𝐿𝐿𝐺𝐺𝑀𝑀𝑡𝑡 − 𝐿𝐿𝐺𝐺𝑀𝑀𝑡𝑡

∗), which gives rise to an error-correction model. 

However, including the CFMA level shift dummy in the long-run relationship must be properly 

incorporated into the estimation, and there can be transitional short-run dynamics immediately 

following passage of the Act. To handle these issues, we estimate broken constant models from 

Johansen et al. (2000). These models generalize the standard cointegration models (see, e.g., 

Johansen, 1996) to allow for structural breaks in the deterministic components where the 

breakpoints are known. Since we are concerned with breaks associated with the adoption of the 

CFMA in our analysis, this is an attractive framework for our empirical design. 

2.4 Technical Details 

The standard VECM framework consists of a model in the form: 

∆𝑋𝑋𝑡𝑡 = Π𝑋𝑋𝑡𝑡−1 + ∑ Γ𝑖𝑖∆𝑋𝑋𝑡𝑡−𝑖𝑖
𝑘𝑘−1
𝑖𝑖=1 + Π1t + 𝜇𝜇 + 𝜀𝜀𝑡𝑡                       (3) 

where 𝑘𝑘 is the number of lags of the underlying VAR model (in levels) and the vector X includes  

LV, LSload, and LOC. Let 𝑝𝑝 be the number of variables in the VAR. Table 1 reports unit root tests 

for each of the variables over our sample period (1985 to 2022). These tests indicate that LV and 
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LSLoad are I(1), but that both LBond and LUsercost may be I(0). While the VECM model can 

include stationary variables, doing so would increase the rank of the system. The table also 

includes tests for real Divisia M3 and real PCE (both in logs), which are used in Appendix 1.  

Under cointegration, 𝛱𝛱 is of reduced rank and is usually written as 𝛱𝛱 = 𝛼𝛼𝛼𝛼′, with 𝛼𝛼, 𝛼𝛼 both 

being 𝑝𝑝 by 𝑟𝑟.  In that case, 𝛼𝛼′𝑋𝑋𝑡𝑡−1 represents the (𝑟𝑟) cointegration relations and 𝛼𝛼 represents the 

corresponding impact coefficients of those relations on the first differences of each of the system 

variables in the VAR. 𝛱𝛱1 is typically imposed to be of the form 𝛱𝛱1 = 𝐿𝐿𝛾𝛾′, so that the model does 

not have a quadratic trend in levels (see Johansen et al., 2000). Consequently, with the reduced 

rank condition imposed, the cointegration relations would be trend stationary, since 𝛱𝛱𝑋𝑋𝑡𝑡−1 +

𝛱𝛱1𝑡𝑡 = 𝛼𝛼 �𝛼𝛼′𝑋𝑋𝑡𝑡−1 + 𝛾𝛾′𝑡𝑡�. In applications, 𝛾𝛾 = 0 can be further imposed, which eliminates the trend 

from the cointegration space, but not from the levels. Assuming 𝛾𝛾 = 0, if it is further imposed that 

𝜇𝜇 = 𝛼𝛼𝛼𝛼′ then the constant is restricted to the cointegrating relationship, and the model will not 

have a linear trend in any direction (Johansen et al., 2000, pp. 218). 

 Johansen et al. (2000) generalize this framework by introducing indicator variables for 

different sample periods:  

𝑃𝑃𝑗𝑗,𝑡𝑡 = �1 for 𝑇𝑇𝑗𝑗−1 + 1 + 𝑘𝑘 ≤ 𝑡𝑡 ≤ 𝑇𝑇𝑗𝑗
0 𝐿𝐿. 𝑤𝑤.                                      

       (4) 

where 𝑗𝑗 = 1, … , 𝑞𝑞.  Setting 𝑇𝑇0 = 0 for convenience, the effective sample is 𝑡𝑡 = 1 + 𝑘𝑘, … , 𝑇𝑇𝑞𝑞 = 𝑇𝑇 

with  𝑋𝑋1, … , 𝑋𝑋𝑘𝑘 being used as initial observations and there are 𝑞𝑞 subsamples with effective sample 

periods running from 1 + 𝑘𝑘 to 𝑇𝑇1, 𝑇𝑇1 + 1 + 𝑘𝑘 to 𝑇𝑇2, and so on. Following Johansen et al. (2000,  

pp. 219), we define the vector of sub-sample indicator variables as 𝑃𝑃𝑡𝑡 = (𝑃𝑃1,𝑡𝑡, 𝑃𝑃2,𝑡𝑡, … , 𝑃𝑃𝑞𝑞,𝑡𝑡)′.   

 Using this notation, Johansen et al. (2000) proposes several models that allow for breaks 

in the deterministic components. As shown in Figure 3, Divisia M3 velocity does not exhibit any 
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clear discernable trend.  Thus, we impose 𝛾𝛾 = 0, which eliminates the possibility of trends entering 

the long-run level of velocity.  Based on econometric considerations, we therefore focus on the 

broken constant specification from Johansen et al. (2000, p. 225).  That specification is as follows:    

∆𝑋𝑋𝑡𝑡 = (Π, μ) �𝑋𝑋𝑡𝑡−1
𝑃𝑃𝑡𝑡

� + ∑ Γ𝑖𝑖∆𝑋𝑋𝑡𝑡−𝑖𝑖
𝑘𝑘−1
𝑖𝑖=1 + ∑ ∑ 𝜅𝜅𝑗𝑗,𝑖𝑖𝐺𝐺𝑗𝑗,𝑡𝑡−𝑖𝑖

𝑞𝑞
𝑗𝑗=2

𝑘𝑘
𝑖𝑖=1 + 𝜀𝜀𝑡𝑡   (5) 

where 𝐺𝐺𝑗𝑗,𝑡𝑡−𝑖𝑖 = 1 if 𝑡𝑡 = 𝑇𝑇𝑗𝑗−1 + 𝑖𝑖 (and zero otherwise) and 𝜇𝜇 = (𝜇𝜇1, … , 𝜇𝜇𝑞𝑞) is a 𝑝𝑝 by 𝑞𝑞 matrix.  The 

term, 𝜇𝜇𝑃𝑃𝑡𝑡, allows for the constant in the VAR to differ across subsamples.  As Johansen et al. 

(2000, p. 220) explain, the model dummies out the 𝑘𝑘 initial observations following each 

breakpoint, 𝑋𝑋𝑇𝑇1+1, … , 𝑋𝑋𝑇𝑇1+𝑘𝑘, 𝑋𝑋𝑇𝑇2+1, … , 𝑋𝑋𝑇𝑇2+𝑘𝑘, … rendering “the corresponding residuals zero 

thereby essentially eliminating the corresponding factors from the likelihood function, and hence 

producing the conditional likelihood function given the initial values in each period”.  The relevant 

reduced rank cointegration hypothesis (Johansen et al. (2000, pp. 225)) is  

𝐻𝐻𝑐𝑐(𝑟𝑟):  𝑟𝑟𝐿𝐿𝑟𝑟𝑘𝑘 (𝛱𝛱, 𝜇𝜇) ≤ 𝑟𝑟        (6) 

so that (𝛱𝛱, 𝜇𝜇) = 𝛼𝛼(𝛼𝛼′, 𝛼𝛼′), where 𝛼𝛼, 𝛼𝛼 are both 𝑝𝑝 by 𝑟𝑟 matrices and 𝛼𝛼 being 𝑞𝑞 by 𝑟𝑟.  With the  

reduced rank condition imposed, Π𝑋𝑋𝑡𝑡−1 + μ𝑃𝑃𝑡𝑡 = 𝛼𝛼(𝛼𝛼′𝑋𝑋𝑡𝑡−1 + 𝛼𝛼′𝑃𝑃𝑡𝑡), corresponding to a set of 𝑟𝑟  

cointegration relations with different constants in each of the 𝑞𝑞 subsamples. Within the same 

specification, Johansen et al. (2000, p. 219) also consider an alternative reduced rank hypothesis:  

𝐻𝐻𝑙𝑙𝑐𝑐(𝑟𝑟):  𝑟𝑟𝐿𝐿𝑟𝑟𝑘𝑘 𝛱𝛱 ≤ 𝑟𝑟                (7) 

Johansen et al. (2000, pp. 218-220) consider the following specification as well: 

∆𝑋𝑋𝑡𝑡 = �Π, Π1, … , Π𝑞𝑞� �𝑋𝑋𝑡𝑡−1
𝑡𝑡𝑃𝑃𝑡𝑡

� + ∑ Γ𝑖𝑖∆𝑋𝑋𝑡𝑡−𝑖𝑖
𝑘𝑘−1
𝑖𝑖=1 + ∑ ∑ 𝜅𝜅𝑗𝑗,𝑖𝑖𝐺𝐺𝑗𝑗,𝑡𝑡−𝑖𝑖

𝑞𝑞
𝑗𝑗=2

𝑘𝑘
𝑖𝑖=1 + 𝜇𝜇𝑃𝑃𝑡𝑡 + 𝜀𝜀𝑡𝑡 (8) 

For this specification, the reduced rank cointegration hypothesis is  

𝐻𝐻𝑙𝑙(𝑟𝑟):  𝑟𝑟𝐿𝐿𝑟𝑟𝑘𝑘 �𝛱𝛱, 𝛱𝛱1, … , 𝛱𝛱𝑞𝑞� ≤ 𝑟𝑟       (9) 

so that  



17 
 

�Π, Π1, … , Π𝑞𝑞� = 𝛼𝛼 �

𝛼𝛼
𝛾𝛾1
⋮

𝛾𝛾𝑞𝑞

�

′

        (10) 

where 𝛾𝛾𝑗𝑗  is 1 by 𝑟𝑟 for all 𝑗𝑗. Imposing the reduced rank condition, the cointegration relations have 

broken trends denoted by 𝛾𝛾𝑗𝑗′𝑡𝑡 in each subsample 𝑗𝑗. We do not consider this specification further, 

given the lack of a discernable trend in Divisia M3’s velocity (Figure 3).  

Johansen et al. (2000) derive likelihood ratio tests for 𝐻𝐻𝑐𝑐(𝑟𝑟) and 𝐻𝐻ℓ𝑐𝑐(𝑟𝑟) against 𝐻𝐻ℓ𝑐𝑐(𝑝𝑝) =

𝐻𝐻𝑐𝑐(𝑝𝑝) and for 𝐻𝐻ℓ(𝑟𝑟) against 𝐻𝐻ℓ(𝑝𝑝), which are in the usual trace test form: i.e. 𝐿𝐿𝐿𝐿{𝐻𝐻𝑐𝑐(𝑟𝑟)|𝐻𝐻𝑐𝑐(𝑝𝑝) =

−𝑇𝑇 ∑ ln (1 − �̂�𝜆𝑖𝑖)
𝑝𝑝
𝑖𝑖=𝑟𝑟+1 . Corresponding tables of critical values for 𝐻𝐻𝑐𝑐(𝑟𝑟) and 𝐻𝐻ℓ(𝑟𝑟) can be found 

in Giles and Godwin (2012). The critical values depend on the relative breakpoints, 𝑣𝑣𝑗𝑗 = 𝑇𝑇𝑗𝑗/𝑇𝑇, 

where 𝑇𝑇𝑗𝑗 is the last observation of the jth subsample and 𝑇𝑇 is the full sample size. Johansen et al. 

(2000, p. 219) find the 𝐻𝐻𝑙𝑙𝑐𝑐(𝑟𝑟) hypothesis to be “less attractive” than the other two hypotheses, 

however, in part due to their finding that “the asymptotic analysis is heavily burdened with 

nuisance parameters” in that case. Consequently, we focus on testing the 𝐻𝐻𝑐𝑐(𝑟𝑟) hypothesis.   

 In our application, the only structural break we consider is associated with the adoption of 

CFMA. To align with our notation, we set the number of sub-samples, 𝑞𝑞, equal to 2 and set 𝑇𝑇1 to 

be 2000Q3 corresponding to the end of the pre-CFMA period, since CFMA passed in 2000Q4. As 

in eq. (4), 𝑃𝑃2,𝑡𝑡 is an indicator variable that is one from 𝑇𝑇1 + 1 + 𝑘𝑘 through the end of the sample, 

where 𝑘𝑘 is the number of lags in the VAR, and zero for earlier periods. The inclusion of the 𝐺𝐺𝑗𝑗,𝑡𝑡−𝑖𝑖 

dummies in eq. (5) implies that we do not need to model the transitional impacts of CFMA and 

that 𝑃𝑃2,𝑡𝑡 is, therefore, effectively an indicator for the post-CFMA period. We follow Johansen et 

al. (2000) as laid out above with one exception. We set 𝑃𝑃1,𝑡𝑡 = 1 over the entire sample rather than 

over just the sub-sample covering the pre-CFMA period. This allows us to present the results in 
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terms of a constant for the full sample and a shift in the constant for the post-CFMA period as in 

eq. (2). This minor change does not affect the estimation of any other parameters nor does it affect 

the test procedures employed. We do this to simplify exposition regarding the effect of CFMA.  

Estimating eq. (5) and setting 𝑟𝑟 = 1 yields coefficients on the X vector components for a 

single long-run relationship, 𝛼𝛼′𝑋𝑋𝑡𝑡−1, with constant term, 𝛼𝛼′𝑃𝑃𝑡𝑡. The corresponding impact 

coefficients, 𝛼𝛼, determine how the endogenous variables each adjust to the long-run relationship. 

Since we focus on velocity, the impact of the long-run relationship on the stock load, the long-

term Treasury rate, or the user cost are not of particular interest and are not reported. Similarly, we 

only report first-order short-run dynamics for the change in velocity, as captured by the 

corresponding row of 𝛤𝛤1 (full results are available upon request). By normalizing the 𝛼𝛼 vector on 

the element corresponding to log velocity, 𝛼𝛼′𝑋𝑋𝑡𝑡−1 can be represented in the following form: 

𝐿𝐿𝑀𝑀𝑡𝑡−1 + 𝛼𝛼2𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡−1 + 𝛼𝛼3𝐿𝐿𝐿𝐿𝑃𝑃𝑡𝑡−1       (11) 

Ignoring the constants in the cointegration, we can define long-run equilibrium velocity as  

𝐿𝐿𝑀𝑀𝑡𝑡−1
∗ ≡ −𝛼𝛼2𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡−1 − 𝛼𝛼3𝐿𝐿𝐿𝐿𝑃𝑃𝑡𝑡−1 = 𝜃𝜃2𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡−1 + 𝜃𝜃3𝐿𝐿𝐿𝐿𝑃𝑃𝑡𝑡−1    

so that the corresponding error-correction term is as follows: 
 

𝑃𝑃𝑃𝑃𝑡𝑡−1 ≡ 𝐿𝐿𝑀𝑀𝑡𝑡−1 − 𝐿𝐿𝑀𝑀𝑡𝑡−1
∗ = 𝐿𝐿𝑀𝑀𝑡𝑡−1 + 𝛼𝛼2𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡−1 + 𝛼𝛼3𝐿𝐿𝐿𝐿𝑃𝑃𝑡𝑡−1   (12) 

which are the deviations from long-run equilibrium. Incorporating the constants in the  

cointegration relations results in 

𝐿𝐿𝑀𝑀∗ = 𝜃𝜃0 + 𝜃𝜃1𝑃𝑃𝐶𝐶𝑀𝑀𝐶𝐶 + 𝜃𝜃2𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 + 𝜃𝜃3𝐿𝐿𝐿𝐿𝑃𝑃     (13) 

 as in eq. (2).11 As discussed previously, theoretical priors imply 𝜃𝜃1, 𝜃𝜃2 < 0 and 𝜃𝜃3 > 0.  

Our model of consumption velocity builds off Bordo and Duca (2025) who model the GDP 

velocity of broad Divisia but differs in three important respects: First, we use PCE to track the 

 
11 Recall that 𝑃𝑃1,𝑡𝑡 is equal to one over the entire sample and 𝑃𝑃2,𝑡𝑡 = 1 in the post-CFMA period as detailed above. 
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aggregate transactions instead of GDP as discussed above. Second, we adopt the technically more 

correct approach of estimating the broken constant specification rather than treating CFMA as a 

regular variable within the VECM as in Bordo and Duca (2025). The trace test for the broken 

constant model can be compared to tables of critical values and are interpreted in the usual way as 

described above. Third, Bordo and Duca (2025) model the impact of COVID-19 with a continuous 

variable that they construct from an index of government mobility restrictions and vaccination 

rates. For the sample that includes post-2019 observations, we instead just include simple impact 

dummies for each of the quarters of 2020, which are sufficient to produce stable long-run 

relationships over our full sample. Modelling velocity in terms of PCE is more attractive than 

GDP, because the Fed’s price stability goal is in terms of PCE inflation.  We later incorporate 

estimates from our model of consumption velocity into a P-Star model of PCE inflation. 

3. Estimation  

3.1 Sample Periods 

 We estimate our consumption velocity model over four sample periods that all start in  

1985Q3 but have different end-of-sample periods. Earlier observations are used as initial starting 

values in the models. We generally find clean residuals for our estimated models with lag lengths 

of 7 quarters or less as described below.  For 7 lags, the 1985Q3 start-of-sample implies that eq. 

(5) is estimated using only data (in differences) going back to 1984Q1. The starting point is chosen 

to avoid using earlier data that could be affected by deposit deregulation and financial innovations  

that led to the introduction of new types of monetary assets.  

During the 1970s and early 1980s, there were shifts away from savings and time deposits  

with binding deposit interest rate ceilings (whose measured user costs were high, because 

Regulation Q capped deposit interest rates below market levels), to money market mutual funds 
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(MMMFs), and later to money market deposit accounts (MMDAs). Super NOW accounts and 

MMDAs were both introduced beginning in late 1982. Super NOWs, MMDAs, and MMMFS all 

paid higher interest rates than regulated deposits and hence had user costs that were relatively low 

and MMDAs and MMMFs also had checking features unlike traditional savings and small-time 

deposits. In light of this, the shifts out of regulated deposits would be weighted by a Divisia index 

using expenditure shares based on relatively high user costs. In contrast, the movement of funds 

into the assets paying higher rates would receive expenditure share weights based on relatively 

low user costs. As a result, these shifts would be associated with a distorted decline in measured 

Divisia (but not simple-sum) money (see Bordo and Duca, 2025, for a discussion). Indeed, over 

this period, there was a corresponding upward level shift in Divisia velocity in the late-1970s and 

early 1980s.  Chen and Valcarcel (2024) find structural breaks in Divisia M2 and Divisia M3 

around 1980 and subsequent breaks in 2012 and 1988 respectively.  They also find structural 

breaks in the corresponding user cost measures in 2008, and that “[o]verall, these statistical tests  

show a preponderance of evidence for a structural break in 1980.”12  

The earliest end of sample period is 2005Q4 (Model 1), which is just before the bursting  

of the subprime mortgage bubble and the GFC. Model 2 ends in 2012Q4 to allow ample time for 

the adjustment of money to the staggered implementation of new financial regulations under the  

Dodd-Frank Act, through which the U.S. implemented the Basel III reforms. Model 3 ends  

in 2019Q4, to span the pre-COVID period, while Model 4 uses a full sample ending in 2022Q4.  

The full sample is based on the availability of the underlying data used to construct the stock load 

variable. The full sample also differs in that we include dummies for each quarter in 2020 to control  

 
12 They also estimate cointegration models over pre- and post-1980 samples and over pre- and post-GFC samples. 
Post 1980, they find correctly signed relationships for Divisia M2 and M3 using their user cost measures, but not for 
simple sum M2. Similarly, they find correctly signed relationships for Divisia M3 and M4 in their post-GFC sample.  
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for the unprecedented impact of the pandemic during its acute initial phase.  

3.2 Estimation Results  

Our specification of long-run equilibrium consumption velocity is spelled out in eq. (13) 

with the corresponding error-correction term in eq. (12) which enters into the short-term dynamics 

of the model. We estimate three versions of the model that differ in terms of opportunity costs. We 

first assess models that include stock fund loads and the long-term bond yield. We then assess 

models including stock fund loads and the Divisia M3 user cost measure from the CFS. Finally, 

we present models that just include stock mutual fund loads. In our estimations, we select lag 

lengths using two criteria: First, we estimate a simple unrestricted VAR in levels and employ LM 

tests for serial correlation (up to four quarters) for lag lengths from 2 to 8. From models having 

clean residuals, we select the lag length that minimizes the Schwartz Information Criterion (SIC).  

3.2.1 Estimation Results using the Long-Term Bond Rate  

Table 2 reports results for models that use the long-term bond rate as the opportunity cost  

variable using the lag length prescribed by our procedure (described above) over the four different 

sample periods. For these models, there are three variables (𝑝𝑝 = 3), so we can use the trace test to 

evaluate 𝐻𝐻𝑐𝑐(𝑟𝑟) for 𝑟𝑟 = 0,1,2. If 𝑟𝑟 = 0, then the system is difference stationary. If 0 < 𝑟𝑟 < 𝑝𝑝, then 

the model has 𝑟𝑟 cointegrating vectors and if 𝑟𝑟 = 𝑝𝑝, then the system is stationary. Throughout this 

section, we report results in terms of the coefficients of the long-run equilibrium velocity 

relationship, eq. (13), since these are easily interpretable. For the shortest subsample, 1985Q3 to 

2005Q4 (Model 1), the trace test rejects r = 0 at the 99% level.13  The rank (𝑟𝑟) is ambiguous 

 
13 Our application has only one breakpoint, which is associated with CFMA. Giles and Godwin (2012, Table 1) provide 
critical values for the trace test. The test statistics depend on the relative breakpoint, 𝑣𝑣1, calculated as the length of the 
sample up to 2000Q3 divided by the full sample size. For 1985Q3-2005Q4, we estimate the model using four quarterly 
lags, so that (including the four initial observations), 𝑣𝑣1 = 65/86 = 0.756 and 1 − 𝑣𝑣1 = 0.244. With a single 
breakpoint, the critical values for 𝑣𝑣1 and 1 − 𝑣𝑣1 are the same. Giles and Godwin compile statistics for 𝑣𝑣1 =
0.1, 0.2, 0.3, 0.4, 0.5, which we use to bracket the actual values of the relative breakpoints for each of our samples. 
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though, since the trace test for r = 1 is borderline at the 90% significance level and the test for 

𝑟𝑟 = 2 is rejected at the 90% level suggesting the possibility that the system is stationary. Our main 

objective is to derive long-run values for consumption velocity for use in the P-star model and we 

will focus on a single cointegrating relationship throughout this section. Setting 𝑟𝑟 = 1, which 

corresponds to a single cointegrating relation, results in reasonably signed coefficient estimates 

for the load variable and for the long-term rate. The coefficient on LSLoad is -0.643 with a t-stat 

of 16.17 implying that higher loads raise money demand and thereby reduce velocity. The 

coefficient on LBond is 0.539 with a t-stat of 10.64 implying that higher long-term rates lower 

money demand and correspondingly raise velocity. The coefficient on CFMA is positive, contrary 

to expectations. Although it is small, its t-stat is 1.87.  The model performs poorly out-of-sample 

in that the estimated error-correction term begins to trend significantly during the GFC and  

remains elevated through the onset of the pandemic.14  

Next, we consider the subsample from 1985Q3 to 2012Q4 (Model 2). For this sample, we 

find that there is at least one cointegrating vector (𝑟𝑟 = 0 is rejected at the 99% confidence level), 

but we cannot rule out two vectors at the 90% confidence level, so once again, there is some 

ambiguity about the rank. For this sample, imposing one cointegrating vector (setting 𝑟𝑟 = 1) yields 

different results than the pre-GFC sample (Model 1). The coefficient on LSload is -0.316, which 

is again consistent with theory. While the coefficient on the long-term rate is still positive (0.011), 

it is close to zero and has a t-stat of just 0.38. The coefficient on CFMA is -0.114, consistent with 

the view that CFMA promulgated the widespread use of credit default swaps.  By enhancing the 

liquidity of assets held by shadow banks, it thereby increased the demand for shadow bank  

 
Thus, for 1985Q3-2005Q4, the corresponding critical values are for 𝑣𝑣1 = 0.2 and 0.3. The bracketing values produce 
identical inference in most cases. 
14 For this subsample, the estimated impact coefficient for the error-correction term for the equation for log velocity 
(𝛼𝛼1) is positive with a very low t-statistic providing further evidence that the model does not perform as expected.   
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liabilities in Divisia M3 and correspondingly lowered its velocity.   

For the pre-pandemic subsample (Model 3), we find a single cointegrating relationship 

(𝑟𝑟 = 1) with sensible coefficients on LSload (-0.277) and CFMA (-0.12) with high t-stats. The 

coefficient on the long-term Treasury rate, however, is -0.026 with a t-stat of 2.35. While the 

coefficient is small, its sign is inconsistent with theory.15 Finally, we estimate the model over the 

full sample through 2022Q4 adding dummy variables for each of quarter in 2020 to control for the 

onset of the pandemic. For the full sample, r = 0 is rejected at the 95% significance level and 𝑟𝑟 =

1 cannot be rejected at the 90% level again indicating a single cointegrating relation. In this sample, 

the coefficient on LSload is -0.3 and the coefficient on CFMA is -0.126. The coefficient on the 

long-term rate is -0.043, however, with a t-stat of 1.62. The COVID dummies effectively delete 

the observations from 2020 from the likelihood function and their coefficients pick up the steep 

drop in velocity in 2020Q2 and its partial recovery in 2020Q3.   

We conclude that the long-term bond yield only has the anticipated effect on velocity in 

the pre-GFC sample, but the model did not perform well out-of-sample in that case. In the other 

three samples, the coefficient on the long-term bond yield is small and often has a counterintuitive 

sign. Thus, the results do not favor including the long-term Treasury yield as a long-run  

determinant of consumption velocity.  

3.2.2 Estimation Results using the Dual User Cost Measure 

As Barnett, et al. (2022) explain, the Divisia dual user cost index is the opportunity cost  

measure that is most internally consistent with a Divisia monetary aggregate, since it is constructed 

from the same underlying data on user costs and asset stocks and is derived within the same 

 
15 We also estimated the model from 1985Q3 to 2013Q4 using the same lag length as for the sample ending in 2012Q4. 
Extending the sample by one year caused the sign of the coefficient on the bond rate to switch from being positive 
(0.011 with a t-stat of 0.38) to being negative (-0.035 with a t-stat of 1.6), which is more in line with the pre-pandemic 
sample period results.    
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aggregation-theoretic framework.  Moreover, if a long-term rate was the appropriate alternative 

rate of return, then the user costs underlying Divisia and its dual should employ such a rate as the 

benchmark.16  While the dual user cost is very attractive on theoretical grounds, we were unable 

to obtain reasonable results using that variable. We now summarize our findings in this regard. 

Our lag selection procedure did not produce clean residuals for any lag length between 2 

and 8 quarters for the 1985Q3 to 2012Q4 sample (Model 2) when the user cost is used as the 

opportunity cost variable. Consequently, we estimated the model using several different lags and 

compared results. At 4 lags, we found that 𝑟𝑟 = 1 and the coefficient on LSLoad is -0.271 and the 

coefficient on CFMA is -0.16, which differ somewhat from the results using the bond rate, but 

seem reasonable. The coefficient on LUsercost, however, was -0.118 with a t-stat of 4.25. 

According to the theory, we would expect a higher user cost to negatively affect money demand 

and, consequently, to positively affect velocity. At 6 lags, there was some ambiguity about the 

number of cointegrating vectors (𝑟𝑟 = 1 would be rejected at the 90% level). We found negative 

coefficients for both LSLoad (-0.244) and CFMA (-0.221) when setting 𝑟𝑟 = 1 but again found a 

counterintuitive negative coefficient for LUsercost (-0.222) with a t-stat of 5.65. For the pre-

pandemic sample, 1985Q3-2019Q4 (Model 3), we estimated the model using the same lag lengths 

for comparison. At 4 lags, 𝑟𝑟 = 1 is rejected at the 90% level, but if we nevertheless impose 𝑟𝑟 = 1, 

then the estimated cointegration vector is very similar to the estimates for the shorter sample  

period. At 6 lags, 𝑟𝑟 = 1 was rejected at the 95% level, but setting 𝑟𝑟 = 1 yielded coefficients of  

-0.252 for LSLoad, -0.192 for CFMA, and -0.169 for LUsercost, which had a t-stat of 5.79.17  

Thus, while the dual user cost is theoretically more attractive, we find that it has a counter- 

 
16 Anderson and Jones (2011) and Anderson et al. (2019) constructed Divisia aggregates using alternative benchmark 
rates, one of which was a long-term rate.   
17 For 2 lags, setting 𝑟𝑟 = 1 yielded similar estimates as 4 lags for both samples.  The coefficient estimates seemed 
unreasonable using 8 lags for both sample periods.    
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intuitive negative effect on velocity in both sample periods for a range of lag lengths. The exact 

reason why this happens is beyond the scope of the current paper, but it potentially reflects the 

impact of the zero-lower bound on the behavior of the underlying user costs following the GFC 

and continuing for a number of years and also following the onset of the pandemic as discussed 

earlier. Another factor, which applies to the long-term yield as well, is the potential stationarity of 

the dual user cost variable. In any case, given these findings, we do not pursue models including 

the dual user cost further in our analysis.    

3.2.3 Estimation Results Excluding the Opportunity Cost Variables 

Building on our previous results, we now estimate more parsimonious models that include 

just the stock load variable as an explanatory factor while accounting for CFMA as in Bordo and 

Duca (2025), although we estimate our models differently as described above. In these models, 

𝑝𝑝 = 2. As reported in Table 3, for Models 1 and 2, which use the pre-GFC subsample (1985Q3 to 

2005Q4) and the 1985Q3 to 2012Q4 subsamples respectively, we find a significant cointegrating 

vector (𝑟𝑟 = 0 is rejected at the 95% significance level or higher and r = 1 cannot be rejected at 

the 90% significance level). For Model 3, which uses the pre-pandemic subsample (1985Q3 to 

2019Q4), r = 0 is rejected at the 99% significance level, but 𝑟𝑟 = 1 is rejected at the 90% 

significance level, so there is some ambiguity about whether the system is cointegrated or just 

stationary for that sample. Setting 𝑟𝑟 = 1 and normalizing on velocity yields similar coefficient 

estimates across all three sub-samples in Models 1-3, with coefficients on the load variable near    

-0.3 and those on CFMA near -0.1. The estimates for these sample periods are all based on VARs  

with 6 lags. We also estimated VARs with 4 and 8 lags and found similar coefficient estimates.18 

 
18 Trace tests are more decisive at 8 lags, rejecting r = 0 at the 99% level and not rejecting 𝑟𝑟 = 1 at the 90% level for 
all three samples. Using 4 lags, 𝑟𝑟 = 0 is rejected at the 95% level and 𝑟𝑟 = 1 is not rejected at the 90% level for the 
1985Q3 to 2012Q4 sample. In contrast, for the pre-GFC sample, 𝑟𝑟 = 0 and 𝑟𝑟 = 1 are both rejected at the 90% level 
using 4 lags, while 𝑟𝑟 = 0 is rejected at the 99% level and 𝑟𝑟 = 1 is rejected at the 95% level in the pre-COVID sample.    
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The estimated impact coefficients on the error-correction terms for log velocity is -0.071 with a t-

stat of 2.56 for the pre-GFC subsample indicating that velocity significantly error-corrects. The 

corresponding coefficients are around -0.12 with t-stats above 4 for the other two subsamples 

indicating faster adjustment of velocity. The model also performs well out-of-sample insofar as 

the error-correction terms based on the subsample ending in 2012Q4 are very similar to the ones 

estimated over the pre-pandemic sample period from 2013 on.  This is an improvement vis a vis 

the models that included the long-term rate. When we included the long-term bond rate, we found 

that the error-correction terms based on the estimates from the subsample ending in 2012Q4 were 

higher than the ones estimated over the pre-pandemic sample period from 2013 on. Turning to the 

full sample (Model 4), we identify a single cointegrating vector (i.e., 𝑟𝑟 = 1) with sensible 

coefficients on LSload (-0.320) and CFMA (-0.091) and the impact coefficient on the error-

correction term for log velocity (-0.09) is reasonable as well.  

To provide more perspective on our results, Figure 5 plots the estimated long-run 

equilibrium consumption velocities from samples ending in 2012Q4 (Model 2) and 2022Q4 

(Model 4). These line up well with each other and with long-run movements in log velocity. The 

slight lead of the long-run equilibrium relative to actual log velocity reflects the importance of  

accounting for partial adjustment toward long-run equilibrium for tracking velocity in the short- 

run and buttresses the credibility of the error-correction models.  As explained above, velocity fell 

initially during the onset of the pandemic when the money supply surged. 

Overall, including stock loads without either the bond yield or the dual user cost measure  

works well for modeling consumption velocity. Our model also performs well if we estimate our 

specification allowing for an unrestricted broken constant (corresponding to 𝐻𝐻ℓ𝑐𝑐(1)  rather than 

𝐻𝐻𝑐𝑐(1)). Furthermore, we found that estimating real Divisia M3 money demand versions of our 



27 
 

  
 Figure 5: Estimated Equilibrium Consumption Velocity Trends with Long-Run Velocity 

(Sources: CFS, BEA, and author’s calculations) 

model yielded analogous results when imposing a single cointegrating vector. These additional 

results are presented in Appendix 1, parts A and B respectively. Accordingly, we adopt our  

parsimonious model of long-run equilibrium velocity for our P-Star models of inflation.19  

3.2.4 Broader Levels of Aggregation 

 Finally, we briefly consider the simple velocity model using the broader Divisia M4- and 

M4 aggregates, both of which include commercial paper. We estimated Models 1-3 excluding  

opportunity cost variables using both of these aggregates for lag lengths of 4, 6, and 8 similar to 

Divisia M3 as discussed above. For M4, we found generally similar coefficient estimates for the 

pre-GFC sample period (Model 1) and the sample period ending in 2012Q4 (Model 2) across the 

various lag lengths. For these two sample periods, the estimated coefficients on the load variable 

ranged from -0.25 to -0.21 and the estimated coefficients on CFMA ranged from -0.09 to -0.075 

 
19 Note that in the post-CFMA period, the econometric model dummies out the observations corresponding to the 
number of lags in the VAR, but in the figure we show the broken constant kicking in immediately in 2000Q4. 
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(with t-stats above 6.0 in all cases) consistent with our theoretical priors. The estimated coefficients 

differed for the pre-pandemic sample period (Model 3). At 4 lags, we found that the coefficient on 

the load variable was -0.27 (t-stat. of 5.93) and the coefficient on CFMA was -0.054 (with a t-stat 

of 2.52).  At 6 and 8 lags, the coefficients on the load variable were around -0.3 with t-stats above 

5.75 and the coefficients on CFMA were -0.038 and -0.021 (with t-stats of 1.49 and 0.97) 

respectively.20 Thus, there is evidence of parameter instability especially regarding the impact of 

CFMA between the sample period ending in 2012Q4 and the pre-pandemic sample period.   

 For M4-, there is additional evidence of parameter instability. For the pre-GFC sample 

period (Model 1), the coefficient estimates at 6 and 8 lags are around -0.28 for the load variable 

and around -0.08 for CFMA. At 4 lags, the corresponding estimates are -0.153 for the load variable 

and -0.103 for CFMA. For Model 2, however, the coefficient estimates ranged from -0.322 to -

0.275 for the load variable and from -0.056 to -0.03 for CFMA. At 6 lags, the coefficient estimate 

on CFMA (-0.03) had a t-stat of just 0.92. In contrast, for the pre-pandemic sample period (Model 

3), the estimated coefficients on the load variable were around -0.37, but the coefficients on CFMA 

were wrongly signed (estimates ranged from 0.002 to 0.024), although the t-stats were below 0.7  

for all three lag lengths.21     

 Thus, for Divisia M4, and even more so for Divisia M4-, there is some evidence of 

parameter instability particularly with respect to the impact of CFMA on long-run velocity vis a 

vis Models 2 and 3. Throughout the remainder of the paper, our focus will be on prediction via the 

P-Star model and the relative stability of the parameter estimates for Divisia M3 is an attractive  

 
20 Our lag length selection procedure described above would have chosen a lag length of 6 for Model 1 and lag lengths 
of 5 for Models 2 and 3.  The estimates using that lag length were similar to what we reported for Model 2 except that 
the coefficient on CFMA was closer to -0.1, but the corresponding estimate had the wrong sign for Model 3.  
21 Our lag length selection procedure described above would have chosen a lag length of 6 for Models 1 and 2 but 
would have chosen 7 for Model 3. At 7 lags, the estimates for Model 3 were -0.35 for the load variable and -0.004 for 
CFMA (with a t-stat of just 0.12).  



29 
 

feature in that respect. Consequently, we will focus on Divisia M3 for subsequent analysis.                       

A plausible explanation for the difficulty in modeling the demand for Divisia M4- and 

Divisia M4 is that they include the monetary services from assets that have not been transformed 

by intermediaries into broadly accepted means of payment. As described earlier, Divisia M4- 

augments Divisia M3 by including commercial paper. When scaled by trend potential nominal 

GDP, commercial paper holdings shifted up with the rise of asset-backed commercial paper from 

the mid-1990s to the mid-2000s (Figure 6). 22  This occurred when shadow banks made greater use 

of leverage in funding their assets by issuing commercial paper, much, but not all of which, was 

held by money funds. This rise unwound sharply starting with the onset of the Global Financial 

Crisis and amplified after Lehman Brothers failed. Even though the opportunity cost of 

commercial paper is small, the large swings in asset holdings could have loosened the overall link 

between Divisia M4- and nominal spending. In addition to including commercial paper, M4 also 

includes Treasury bills held outside of banks and money funds, which may further affect the ability 

to model the velocity of M4. 

 
4. Using Divisia M3 in a P-Star Framework for Predicting Inflation 

4.1 A P-Star Model for Consumer Inflation 

As discussed previously, P-Star models are derived from the equation of exchange: 

 𝑃𝑃𝑡𝑡𝑃𝑃𝑡𝑡 = 𝑀𝑀𝑡𝑡𝑀𝑀𝑡𝑡          (14) 
 
where 𝑃𝑃𝑡𝑡 is the price level, 𝑃𝑃𝑡𝑡 is real income, 𝑀𝑀𝑡𝑡 is nominal money, and 𝑀𝑀𝑡𝑡 is velocity. As in 

Belongia and Ireland (2015, 2017, 2021) and Ireland (2024), the long-run price-level target is: 

𝑃𝑃𝑡𝑡
∗ = 𝑀𝑀𝑡𝑡𝑀𝑀𝑡𝑡

∗/𝑃𝑃𝑡𝑡
∗         (15) 

In natural logs (denoted by lower case letters), eq. (14) takes the following form: 

 
22 The scaling controls for the overall size of the economy and using potential abstracts from the business cycle. 
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Figure 6: Commercial Paper Not Held By Money Funds Scaled by Potential Nominal GDP 
(Sources: Financial Accounts of the U.S., CBO, and Authors’ calculations) 

 
𝑝𝑝𝑡𝑡 + 𝑦𝑦𝑡𝑡 = 𝑚𝑚𝑡𝑡 + 𝑣𝑣𝑡𝑡        (16) 

and, similarly for eq. (15). If the log of the price level has a unit root (is integrated of order 1), then 

an error-correction model of inflation (𝜋𝜋 = ∆𝑝𝑝) could be specified as: 

 ∆𝑝𝑝𝑡𝑡 = 𝛼𝛼 + 𝛼𝛼1∆𝑝𝑝𝑡𝑡−1 + ⋯ + 𝛼𝛼𝑞𝑞∆𝑝𝑝𝑡𝑡−𝑞𝑞 + 𝛾𝛾(𝑝𝑝𝑡𝑡−1
∗ − 𝑝𝑝𝑡𝑡−1) + 𝜀𝜀𝑡𝑡      (17) 

where γ is expected to be positive, 𝑞𝑞, is the lag length, and 𝜀𝜀 is an i.i.d. residual. Eq. (17) is the  

form of P-star estimated by, for example, Kamal (2014). However, for the sample period used by 

Hallman, et al. (1991), 𝜋𝜋 was not stationary and had a unit root. Appealing to the inflation-

augmented Phillips Curve, Hallman et al. (1991) cast their P-Star model in terms of the change in 

inflation (∆2𝑝𝑝 = ∆𝜋𝜋), which was stationary over their sample periods resulting in: 

∆2𝑝𝑝𝑡𝑡 = 𝛼𝛼 + 𝛼𝛼1∆2𝑝𝑝𝑡𝑡−1 + ⋯ + 𝛼𝛼𝑞𝑞∆2𝑝𝑝𝑡𝑡−𝑞𝑞 + 𝛾𝛾(𝑝𝑝𝑡𝑡−1
∗ − 𝑝𝑝𝑡𝑡−1) + 𝜀𝜀𝑡𝑡                            (18)       

  Their model is equivalent to regressing the change in inflation on its lags and the price gap: 
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∆𝜋𝜋𝑡𝑡 = 𝛼𝛼 + 𝛼𝛼1∆𝜋𝜋𝑡𝑡−1 + ⋯ + 𝛼𝛼𝑞𝑞∆𝜋𝜋𝑡𝑡−𝑞𝑞 + 𝛾𝛾(𝑝𝑝𝑡𝑡−1
∗ − 𝑝𝑝𝑡𝑡−1) + 𝜀𝜀𝑡𝑡       (19) 

One can decompose the “price gap” in logs (𝑝𝑝∗ − 𝑝𝑝) as in Belongia and Ireland (2017) as:  

𝑝𝑝𝑡𝑡
∗ − 𝑝𝑝𝑡𝑡 = (𝑚𝑚𝑡𝑡 + 𝑣𝑣𝑡𝑡

∗ − 𝑦𝑦𝑡𝑡
∗) − (𝑚𝑚𝑡𝑡 + 𝑣𝑣𝑡𝑡 − 𝑦𝑦𝑡𝑡) = (𝑣𝑣𝑡𝑡

∗ − 𝑣𝑣𝑡𝑡) − (𝑦𝑦𝑡𝑡
∗ − 𝑦𝑦𝑡𝑡)          (20) 

which implies that eq. (19) can be transformed into: 

∆𝜋𝜋𝑡𝑡 = 𝛼𝛼 + 𝛼𝛼1∆𝜋𝜋𝑡𝑡−1 + ⋯ + 𝛼𝛼𝑞𝑞∆𝜋𝜋𝑡𝑡−𝑞𝑞 + 𝛾𝛾(𝑣𝑣𝑡𝑡−1
∗ − 𝑣𝑣𝑡𝑡−1) − 𝛾𝛾(𝑦𝑦𝑡𝑡−1

∗ − 𝑦𝑦𝑡𝑡−1) + 𝜀𝜀𝑡𝑡          (21) 

Ireland (2024) estimates versions of (21) that allow the coefficients on the two gap terms to 
differ.23  

Following Ireland (2024), we treat 𝑦𝑦 as real PCE and use the PCE price deflator to measure 

inflation, so that 𝑦𝑦∗ is trend or equilibrium real consumption; see also Belongia and Ireland (2017).  

The change in the log of the PCE deflator (ΔLPPCE) is stationary over 1985 to 2024Q3; see Table 

1. Consequently, we estimate a specification corresponding to eq. (17) while incorporating the 

decomposition of the gap term in eq. (20), which results in our general estimating equation: 

𝜋𝜋𝑡𝑡 = 𝛼𝛼 + 𝛼𝛼1𝜋𝜋𝑡𝑡−1 + ⋯ + 𝛼𝛼𝑞𝑞𝜋𝜋𝑡𝑡−𝑞𝑞 + 𝛾𝛾𝑣𝑣(𝑣𝑣𝑡𝑡−1
∗ − 𝑣𝑣𝑡𝑡−1) − 𝛾𝛾𝑦𝑦(𝑦𝑦𝑡𝑡−1

∗ − 𝑦𝑦𝑡𝑡−1) + 𝜀𝜀𝑡𝑡           (22) 

which allows for the coefficients on the two gap terms to differ as in Ireland (2024). We consider  

specifications where 𝛾𝛾𝑣𝑣 = 𝛾𝛾𝑦𝑦 is imposed and where it is not.  

We use our velocity model developed in Section 3.2.3 to estimate long-term equilibrium log 

velocity, 𝑣𝑣∗. To implement the P-star model, we treat the 1985Q3 to 2012Q4 period as our “in 

sample” and then calculate the “velocity gap”, 𝑣𝑣∗ − 𝑣𝑣, out of sample from 2013Q1 to 2024Q3. 

Here, we set the stock load variable at its 2022Q4 value in 2023-24 in order to cover the period 

encompassing the run up and partial winding down of inflation. As Figure 5 shows, velocity tends 

to be above its long-run equilibrium following the GFC until just before the pandemic. 

 
23 An alternative is El Shagi, et al. (2015) who define adjusted (log) velocity as 𝑣𝑣𝑡𝑡

𝑎𝑎 = 𝑝𝑝𝑡𝑡 + 𝑦𝑦𝑡𝑡
∗ − 𝑚𝑚𝑡𝑡 = 𝑝𝑝𝑡𝑡 + 𝑦𝑦𝑡𝑡 − 𝑚𝑚𝑡𝑡 +

(𝑦𝑦𝑡𝑡
∗ − 𝑦𝑦𝑡𝑡) = 𝑣𝑣𝑡𝑡 + (𝑦𝑦𝑡𝑡

∗ − 𝑦𝑦𝑡𝑡), implying that 𝑝𝑝𝑡𝑡
∗ − 𝑝𝑝𝑡𝑡 = 𝑣𝑣𝑡𝑡

∗ − �𝑣𝑣𝑡𝑡 + (𝑦𝑦𝑡𝑡
∗ − 𝑦𝑦𝑡𝑡)� = 𝑣𝑣𝑡𝑡

∗ − 𝑣𝑣𝑡𝑡
𝑎𝑎 .  El Shagi and Geeson (2013) 

examine an adjusted velocity that does not impose long-run unit income elasticity of money demand.   
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Consequently, the velocity gap is generally negative throughout the 2010’s implying downward 

pressure on inflation due to monetary factors given eq. (22). Although not conclusive, this is 

certainly suggestive given that core inflation was nearly always below the Fed’s 2% target 

throughout this period. We select the lag length by the SIC criteria following Ireland (2025).     

Belongia and Ireland (2015) use the one-sided HP filter (Stock and Watson, 1999) to  

detrend real income and velocity.24 We too use a one-sided HP filter to calculate equilibrium log 

consumption in order to compute 𝑦𝑦∗ − 𝑦𝑦, which we will refer to as cgap in the tables. As explained 

above, however, we modify the Belongia-Ireland (B-I) framework by using our parsimonious 

model of equilibrium velocity to calculate the velocity gap, 𝑣𝑣∗ − 𝑣𝑣, which we will refer to as vgap. 

Later, we compare results to using the one-sided HP to also detrend log velocity. Finally, we use 

pgap, which equals vgap minus cgap, to refer to the price gap.  A potential advantage of our model-

based approach for velocity is that many detrending filters do not perform well over the pandemic. 

For example, Kamber et al. (2025) found that for the output gap, “the real-time HP filter estimates 

in 2018-2019 suggested that the economy was very close to trend, while the estimates for the same 

time period have been subsequently revised upwards.” They also find that their refined Beveridge-

Nelson (BN) filter “would have provided a better prediction of the final-vintage HP filter estimates 

than a one-sided HP filter.”25 Although our model of equilibrium velocity is estimated in-sample 

before COVID-19, its out-of-sample performance is impressive as seen in Figure 5. Nevertheless, 

we are still subject to this criticism as it relates to detrended consumption.    

4.2 Modeling Overall and Core PCE Inflation 

 
24 Hallman et al. (1991) assumed that trend velocity was constant and equal to its sample average, while Orphanides 
and Porter (2000) estimated it using a forecasting equation.   
25 Regarding the Hamilton filter, they find that it “is more reliable than the HP filter and this holds during the 
pandemic” but it “suffers from base effects that produce a mechanical spike in the estimated output gap exactly two 
years after the onset of the pandemic, in line with the filter horizon.” 
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We use the framework in eq. (22) to model overall and core PCE inflation: ΔLPPCE and  

ΔLPcorePCE respectively. We use the estimated coefficients from Model 2, Table 3 corresponding 

to the 1985Q3-2012Q4 sample period, to calculate 𝑣𝑣∗. Using these coefficients, we calculate a 

static forecast of 𝑣𝑣∗ out-of-sample from 2013 until the end of our sample period and the 

corresponding velocity gap term, 𝑣𝑣∗ − 𝑣𝑣 (vgap). As previously noted, we extend the out-of-sample 

period to 2024Q3. The in-sample period ends in 2012Q4, which reflects two factors. First, as 

Figure 5 shows, this provides ample time for both equilibrium and actual velocity to recover from 

the large negative shock associated with the subprime and global financial crisis (GFC) of 2007-

11. Moreover, the regulatory response to the GFC took the form of the Dodd-Frank Act, which 

was passed in mid-2010, and which came out in phases and affected money creation. We then 

estimate the P-Star model eq. (22) from 2013Q1 to 2024Q3. All regressions include separate 

dummies for 2020Q2, 2020Q3, and 2020Q4 to control for the initial phase of the pandemic.  

To eq. (22), we add two variables to control for other unusual shocks. All of our estimated 

models include DPEnergy, which is a dummy equal to 1 in any quarter in which the PCE price 

index for energy goods and services falls by more than 10 percent relative to a PCE price index 

which excludes energy goods and services. Including this dummy addresses large outliers that are 

reflective of global shocks to energy prices while avoiding introducing multicollinearity with 

smoother energy price variables, such as the continuous percent change in relative energy prices 

that may partly reflect general trends in overall inflation. The dummy picks up 2020Q2, but we set 

it to zero in that period to avoid conflating the coefficient on it with the worst quarter of the 

pandemic.26 Consequently, the dummy is de facto a dummy for 2015Q1, when energy prices 

sagged during a major, downshift in the long-term growth rate of the Chinese economy. Owing to 

 
26 The larger absolute size of coefficients on D2020Q2 versus DPEnergy supports having two separate variables. 
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its construction, DPEnergy is expected to have a negative coefficient, which is expected to be 

larger in magnitude for overall than for core PCE inflation. The coefficient in core PCE inflation 

models may be significant and negative owing to the pass-through of energy price drops into the 

prices of other consumer items. 

 To shed light on how disruptions to supply pressures affected inflation during the recovery  

from the COVID Recession, we test versions of eq. (22) that also include the t-1 level of the 

quarterly average of the FRBNY’s Index of Global Supply Chain Pressures (SupPress). This index 

draws information from several indicators of supply pressures and effort is made to remove the 

influence of demand side factors from the index. During the pandemic, spikes in SupPress reflect 

breakdowns in market functioning associated with supply chain disruptions that are not easily 

captured by our measure of the consumption gap and are plausibly inflationary in nature.  Over a 

sample from when SupPress begins in 1998Q1 to 2024Q3, the unit root tests (Table 1) indicate 

that it is I(0), implying that the level of SupPress could be tested in a regression with other variables 

that are stationary. We separately add the t-1 change and the t-1 level of the index to different 

models because it is unclear, a priori, which should enter the P-Star model. For overall PCE 

inflation, we include both the t-1 and t-2 lags of ΔSupPress when testing for the effects of changes. 

 We estimate six P-Star models for quarterly overall PCE inflation and core PCE inflation 

(annualized) over a 2013Q1-2024Q3 sample, which are reported in Tables 4 and 5 respectively. 

By extending the sample through 2024Q3, we are able to bolster the limited number of 

observations and to pull in more data from the recent period when SupPress moves a lot. In each 

table, Model 1 is a P-Star model that follows eq. (22) allowing for differences in the coefficients 

on vgap and cgap as in Ireland (2024). Model 2 combines the velocity (vgap) and consumption 

(cgap) gaps into the price gap (pgap = vgap - cgap) thus imposing equality of the coefficients as 
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in the standard formulation of the model (e.g., Belongia and Ireland, 2017). Given the potential 

errors in measuring consumption gaps in real time during the pandemic, it may be more accurate 

to focus on the overall price gap rather than its subcomponents. Models 1 and 2 omit SupPress. 

Models 3 and 4 repeat Models 1 and 2, respectively, except that they add the lagged level of 

SupPress, while Models 5 and 6 add the lagged change SupPress to the models of core inflation 

and both the first and second lags of the change in SupPress to the models of overall PCE inflation.    

4.3 Estimation Results for Overall and Core PCE Inflation 

Several notable patterns emerge in Tables 4 and 5. In the even-numbered models, the 

combined price gap term is statistically significant. In the odd-numbered models that decompose 

the price gap, the velocity gap terms are significant with the expected positive sign.27 The real 

consumption gaps have insignificant coefficients in all cases with unexpected positive coefficients 

in two cases. Moreover, the coefficient on the consumption gap is lower in absolute magnitude 

than the coefficient on the velocity gap across all specifications. The lagged level of the supply 

chain index has a positive and significant coefficient for all models in Tables 4 and 5, while the 

lagged change in the index is significant and positive as expected for models of core PCE inflation 

in Table 5. For overall PCE inflation, the first lag of the change is insignificant and positive, while 

the second lag is significant and positive. The evidence that the velocity and price gaps have 

statistically significant and positive effects, while the coefficients on the level and first difference 

of SupPress are positive and significant, together imply roles for both aggregate demand and 

supply pressures in driving the rise and partial ebbing of inflation during the COVID recovery. 

The COVID impact dummies for 2020Q2 and 2020Q4 are highly significant in all specifications.  

 
27 Because the velocity gap is based on an estimated variable, v*, the standard errors should be corrected. Nevertheless, 
the standard t-statistics on the vgap and pgap variables in Tables 4 and 5 are very high. 
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 Figure 6 illustrates the estimated role of these factors on core PCE inflation using Model 4 

from Table 5. Actual core inflation is plotted along with an adjustment for the COVID dummy 

effects. The figure plots the estimated effect of global supply pressures and the sum of the 

estimated effects of the lag of pgap and of the level of supply pressures, where the latter is the 

product of the lag of SupPress and its estimated coefficient. The gap between the latter two lines 

reflects how much the lagged deviation between equilibrium prices and actual prices (pgap) affects 

inflation beyond that captured by including five quarterly lags of inflation (and the energy 

dummy). It is unclear how much of the lagged changes in inflation reflect past aggregate demand 

versus supply shocks. The chart illustrates how the standard P-Star price gap and changes in supply 

conditions are directly linked to recent movements in core inflation rates. While the estimated 

contribution of supply pressures to the temporary run-up of core inflation is notable, more of it is 

attributable to aggregate demand pressures reflected in the gap between the two lower plotted lines.   

Figure 7 repeats Figure 6 except it uses estimated coefficients from Model 6 in Table 5 and also 

gauges supply chain pressure effects using the change instead of the level of SupPress.  The only 

notable difference in results is that the estimated effect of global supply chain pressures is much 

smaller, implying that there was an even larger relative role for aggregate demand pressures in 

explaining the 2021-22 run-up in core PCE inflation and its retreat in 2023 to mid-2024. 

4.4 Comparison with using HP Filter to Model Long-Run Velocity 

 Tables 6 and 7 report results from overall and core PCE inflation models that correspond  

to the models in Tables 4 and 5, respectively, except that they use a one-sided HP filter to calculate 

the velocity gap, as in Belongia and Ireland (2015, 2017, 2021) and Ireland (2024), and consistent  

with how we calculated cgap. We use vgapHP and pgapHP to distinguish these from the earlier 

estimates in Tables 4 and 5. We refer to models in Tables 4 and 5 as our “modified approach”.    
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 There are several patterns across the overall PCE inflation results in Tables 4 and 6.  First, 

in the odd numbered models, the velocity gap is either less significant or not at all for the HP 

 
 

Fig. 6: Effects of the Price Gap and Supply Chain (Level) Pressures on U.S. Core Inflation 
(Sources: BEA, FRBNY, and authors’ calculations) 
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Figure 7: Effects of the Price Gap and Supply Chain (Changes) Pressures on 
U.S. Core Inflation (Sources: BEA, FRBNY, and authors’ calculations) 

filtered velocity gaps (Table 6), whereas vgap is always significant at the 99% level in our modified 

models (Table 4). Second, and similarly, the price gap terms in the even-numbered models are 

more significant in the modified models in Table 4 than in the corresponding models in Table 6 

except for Model 6. Third, the fit of the modified models in Table 4 is uniformly better (including 

for Model 6) as evidenced by the higher adjusted R2’s across the board that range from 0.092 

higher for Model 4 (0.751 vs. 0.843) to 0.188 higher for Model 5 (0.683 vs. 0.871).28   

 The differences in significance of the price and velocity gaps and overall fit of the model 

arise from the differences in how the velocity gap is calculated. These are compared in Figures 8 

and 9. During much of the period from 2010 to 2019, the one-sided HP filter trend is above velocity 

leading to small, but often positive, velocity gaps, indicating upward pressure on inflation. In 

 
28 Also, the modified models (Table 4) fit somewhat better when ΔSupPress is used, while Table 6 models favor using 
the level of SupPress. Also, the difference in fit is much larger in Table 6.  
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contrast, the velocity gap from our model is generally slightly negative over 2010-19 (since 

velocity is usually above its long-run equilibrium over this period), implying that velocity was 

putting downward pressure on inflation in a period when it was generally slightly below the Fed’s 

2 percent target.  

From 2020 through 2024, the one-sided HP trend lags behind the actual u-shaped velocity 

trajectory as shown in Figure 8. This produces a short-lived upward spike in the velocity gap as 

shown in Figure 9 after which the velocity gap turns negative in mid-2021 and bottoms out in early 

2023-suggesting downward pressure on inflation precisely when inflation was surging. In contrast, 

our velocity gap also spikes and then declines, but much more gradually, and remains positive 

through early 2023. Then, small negative velocity gaps and negative money growth accompany 

the sharp deceleration of inflation since early 2023. Thus, our velocity gap measure appears more  

  
Figure 8: HP Trend Velocity Lags Actual U.S. Velocity in the Early-2020s 

(Sources: CFS, Federal Reserve, BEA, and author’s calculations) 
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Figure 9: Estimated Velocity Gap Implies More Plausible Swings in 

U.S. Inflationary Pressures Than an HP Filter-Based Measure 
(Sources: CFS, Federal Reserve, BEA, and author’s calculations) 

 
consistent with actual inflation.   
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Taken together, these results suggest that our modified model enhances the ability of the 

P-star model to gauge inflationary pressures over this period and that by doing so, it helps us to 

avoid overstating the role of supply pressures in contributing to the rise and the partial ebbing of 

inflation over 2021-2024.    

 
5. Conclusion 

 Broad Divisia measures of money services were ignored by many macroeconomists during 

the COVID Recession and the recovery from it because of past instability of the demand for 

simple-sum monetary aggregates. We show that the velocity of U.S. broad Divisia M3 is well 

modeled by, and is a stable function of, stock mutual fund loads and the shift in derivatives 

legislation since 1985. We also demonstrate that short-run deviations of actual from equilibrium 

velocity help explain recent inflation in the U.S. We estimate a parsimonious error-correction 

model for the consumption velocity of Divisia M3 and use it to calculate the deviation of velocity 

from its long-run equilibrium out of sample. We then incorporate the corresponding velocity gap 

into the P-star model advocated by Belongia and Ireland (2015, 2017) and Ireland (2024) among 

others allowing us to incorporate structural factors altering the consumption velocity of Divisia 

M3. We find that our approach enhances the ability of the P-star model to gauge inflation pressures 

resulting from the velocity gap. In our modified framework, we find that only some of the 2021-

22 surge in U.S. inflation is attributable to global supply pressures, with a larger contribution 

coming from aggregate demand. From a broader perspective, our findings are consistent with 

recent studies, which imply a role for both strong aggregate demand growth and negative supply 

factors in driving up U.S. core inflation during 2021-22 (e.g., Bernanke and Blanchard, 2025, and 

di Giovanni, et al., 2022). 
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Movements in Divisia M3 and its short-run determinants plausibly reflect the confluence 

of macroeconomic factors. These can include some fiscal policy actions that were indirectly 

supported by Fed balance sheet actions, as well as shifts in risk aversion associated with the 

unfolding of the pandemic. Indeed, there are strong parallels during and after the pandemic 

between the build-up and unwinding of excess saving in response to tax cuts and changes in risk 

aversion from a Keynesian perspective, and a rapid rise and then fall of real monetary services 

from a more monetary view. This argues against a simple and overly reductive monetarist 

interpretation of our findings. Instead, as Nelson (2003) argued, “a spectrum of yields matters for 

the determination of aggregate demand and money demand” so that “money conveys information 

about monetary conditions not summarized by the short-term interest rate.” Nelson’s (2003) point 

is strengthened by the subsequent use of unconventional monetary policy tools in the Great and 

COVID Recessions that affected long-term Treasury yields and of private bond backstops that 

capped private credit risk premia in the COVID Recession (see Bordo and Duca, 2021, 2022). 

Further, Divisia money measures are better suited for an indicator role than simple sum monetary 

aggregates that assume perfect substitutability and which make no use of monetary asset user costs 

in their construction. We argue that broad Divisia measures are more reflective of variation in 

overall aggregate demand pressures and their lagged effects on the macroeconomy. From this 

perspective, the usefulness of broad Divisia money as an important U.S. macroeconomic indicator 

is consistent with the central themes and the title of Don Patinkin’s classic book, Money, Interest, 

and Prices, in which prices, quantities, and lagged adjustment play key roles in the 

macroeconomy.29   

 
29 See Keating et al (2014), Keating et al (2019), and Belongia and Ireland (2016, 2018) for empirical support for 
including Divisia monetary aggregates in structural VAR models of monetary policy.  
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Appendix 1: Robustness Checks on the Preferred Model of Consumption Velocity 

A. Unrestricted Constant Version of Our Consumption Velocity Model 

As a robustness check, we estimate a model corresponding to eq. (5), with Π being of 

reduced rank, but leaving 𝜇𝜇 unrestricted as in 𝐻𝐻ℓ𝑐𝑐(𝑟𝑟). This results in a model of the form:   

∆𝑋𝑋𝑡𝑡 = 𝛼𝛼𝛼𝛼′𝑋𝑋𝑡𝑡−1 + ∑ Γ𝑖𝑖∆𝑋𝑋𝑡𝑡−𝑖𝑖
𝑘𝑘−1
𝑖𝑖=1 + ∑ ∑ 𝜅𝜅𝑗𝑗,𝑖𝑖𝐺𝐺𝑗𝑗,𝑡𝑡−𝑖𝑖

𝑞𝑞
𝑗𝑗=2

𝑘𝑘
𝑖𝑖=1 + μ𝑃𝑃𝑡𝑡 + 𝜀𝜀𝑡𝑡   (5’) 

We estimate eq. (5’) with 𝑟𝑟 = 1 for the samples ending in 2012Q4 and 2019Q4. For this 

specification, the constant in the cointegration relations equals the estimated constants in eq. (5’) 

multiplied by 𝛼𝛼(𝛼𝛼𝛼𝛼′)−1 following Johansen (1991, p. 1553). For both samples, the coefficient on 

LSload is about -0.29, the impact coefficient for velocity is around -0.15 and coefficients on CFMA 

are -0.107 and -0.101 for the samples ending in 2012Q4 and 2019Q4, respectively. The error-

correction terms are also very similar to those estimated from the less general model. 

B. Estimating an Equivalent Money Demand Model of Real Divisia M3 

 The consumption velocity models effectively impose a unitary income elasticity of money 

demand.  As a robustness check, one can instead estimate real money demand models by separating 

the consumption velocity into real Divisia M3 (LDM) and real PCE (LPCE), where real Divisia 

M3 equals nominal Divisia M3 divided by the implicit PCE price deflator. In this case, we would 

be interested in the long-run money demand function corresponding to eq. (1’) in the main text, 

which we repeat here for the reader’s convenience: 

𝐿𝐿𝐺𝐺𝑀𝑀𝑡𝑡
∗ = 𝛾𝛾0 + 𝛾𝛾1𝑃𝑃𝐶𝐶𝑀𝑀𝐶𝐶𝑡𝑡 + 𝛾𝛾2𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡 + 𝛾𝛾3𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡     (1’) 

We estimate this specification over the 1985Q3-2012Q4 and 1985Q3-2019Q4 sample 

periods using the same number of lags as for the corresponding velocity models for consistency. 

For the pre-pandemic sample period, r = 0 is rejected at the 99% significance level, 𝑟𝑟 = 1 is 

rejected at the 95% significance level, and 𝑟𝑟 = 2 cannot be rejected at the 90% significance level. 
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Despite these results, we are primarily interested in the case where there is a single cointegrating 

vector. Setting 𝑟𝑟 = 1, we normalized the estimated cointegration vector on LDM and represent the 

other coefficients in terms of a long-run real money demand function as in eq. (1’). If the estimated 

consumption elasticity is close to one, then we would expect the estimated coefficients on LSLoad 

and CFMA to be similar to their estimated values in the velocity models, but with opposite signs, 

since 𝐿𝐿𝑀𝑀 = 𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃 − 𝐿𝐿𝐺𝐺𝑀𝑀 as explained in the main text.  We found that the estimated consumption 

elasticity is 1.004, the estimated coefficient on the stock load is 0.285, and the estimated coefficient 

on CFMA is 0.124. We also estimated the specification corresponding to eq. (5’), as described in 

part A of this Appendix. Setting 𝑟𝑟 = 1, we found nearly identical estimated coefficients for LPCE 

and LSLoad and an estimated coefficient on CFMA of 0.113. Thus, despite the ambiguity regarding 

the rank of the system, if we impose a single cointegrating vector, we find that the model is very 

consistent with our velocity models presented in the main text. 

 For the subsample ending in 2012Q4, r = 0 is rejected at the 99% significance level, 𝑟𝑟 =

1 is rejected at the 90% significance level, but not at the 95% level, and 𝑟𝑟 = 2 cannot be rejected 

at the 90% significance level. Again setting 𝑟𝑟 = 1, we found that the estimated consumption 

elasticity is 1.16, the estimated coefficient on the stock load is 0.364, and the estimated coefficient 

on CFMA is 0.097. For the specification corresponding to eq. (5’) over this sample period with 

𝑟𝑟 = 1, we found estimated coefficients of 1.13 on LPCE, 0.351 on LSLoad and 0.093 on CFMA. 

Once again, the estimated coefficients are generally in line with those of the velocity model when 

a single cointegrating vector is imposed, although we find a consumption elasticity of money 

demand that is close to but slightly higher than unity making the results somewhat less compelling.  
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Table 1: Unit Root Tests 
Variable       Augmented Dickey        Reject      Phillips-Perron       Reject          

        Fuller Test (SIC lag)   Unit  Root?     (bandwidth)      Unit Root?       
 

1984-2022 For Velocity and Money Demand Models 
 

LDM         -1.871            No        -1.937        No   
(DivM3)                   (1)                                         (5.43)                            

 

ΔLDM       -7.687**        Yes        -7.573**      Yes   
(DivM3)                    (0)                                             (1.48)                  
 

LPCE           -1.872            No        -1.750    No   
      (0)                                      (1.97)                            

 

ΔLPCE      -14.503**        Yes       -14.503**        Yes   
                                  (0)                                             (0.506)  

 

LV                -2.138            No         -2.155        No   
(DivM3)                    (0)                                       (1.38)                        

 

ΔLV    -12.062**         Yes           -12.062**        Yes   
(DivM3)                    (0)                                            (0.354)              

 

LSload     -1.191            No        -1.239      No         
                                          (1)                                             (13.1)       
 

ΔLSload                 -4.561**         Yes        -4.729**                Yes   
                           (0)                                             (1.82)                      
       

LUserCost             -3.654*                Yes             -3.609*                 Yes 
        (DivM3)                    (1)                                             (2.83)       
 

        ΔLUserCost         -10.844**          Yes      -10.844**                Yes   
        (DivM3)                    (0)                                            (0.493)                                

 

LBond                   -4.452**                 Yes        -3.692                   Yes 
                            (1)                                             (4.67)       

 

ΔLBond    -8.684**          Yes        -8.823**                Yes   
                           (1)                                             (1.73)                             

1984-2024Q3 For P-Star Model Variables 
 

ΔLPPCE      -6.986**          Yes        -6.986**  Yes   
      (0)                                      (1.19)                            

 

Δ2LPPCE -13.829**        Yes       17.420**        Yes   
                                  (1)                                             (1.67)  
 

ΔLPcorePCE      -3.277+                borderline        -4.256    Yes   
      (1)                                       (2.3)                            

 

Δ2LPcorePCE    -13.330**                    Yes      -21.094**        Yes   
                                  (1)                                             (1.78)  
 

SupPress          -3.997*           Yes        -4.110**            Yes   
      (0)                                      (1.75)                            

 

ΔSupPress      12.762**        Yes       -12.762**        Yes   
             (0)                                      (0.44)                      
Notes: +, * and ** denote 90%, 95% and 99% significance. Lag length (lag) or bandwidth statistics are in parentheses. Tests 
for SupPress begin in 1998 when the series starts.  Lag lengths for ADF tests selected using the SIC. Phillips-Perron tests use 
the quadratic spectral kernel with an Andrews Bandwidth. All tests include an intercept and a time trend.  
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Table 2: Quarterly Models of U.S. Consumption Velocity Including Long Treasury Yields 
Long-Run Relationship:  𝐿𝐿𝑀𝑀∗ = 𝜃𝜃0 + 𝜃𝜃1𝑃𝑃𝐶𝐶𝑀𝑀𝐶𝐶 + 𝜃𝜃2𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 + 𝜃𝜃3𝐿𝐿𝐿𝐿𝐿𝐿𝑟𝑟𝐿𝐿 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Short-Run:  Δ𝐿𝐿𝑀𝑀𝑡𝑡 = 𝛼𝛼1𝑃𝑃𝑃𝑃𝑡𝑡−1 + Γ1(1,1)Δ𝐿𝐿𝑀𝑀𝑡𝑡−1 + Γ1(1,2)Δ𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡−1 + Γ1(1,3)Δ𝐿𝐿𝐿𝐿𝐿𝐿𝑟𝑟𝐿𝐿𝑡𝑡−1 + ⋯ 

ECt-1 0.006 
(0.30) 

-0.088 
(2.97) 

-0.159 
(5.41) 

-0.042 
(3.24) 

     

ΔLVt-1 0.179 
(1.62) 

0.406 
(4.11) 

0.349 
(4.17) 

0.330 
(3.82) 

     

ΔLSloadt-1 -0.036 
(0.48) 

-0.110 
(1.44) 

-0.091 
(1.29) 

-0.090 
(1.29)   

     

ΔLBondt-1 0.048 
(4.09) 

0.019 
(1.91) 

0.016 
(2.43) 

0.018 
(2.93) 

     

D2020Q1t  
  

-0.036 
(5.33) 

     

D2020Q2t  
  

-0.198 
(26.17) 

     

D2020Q3t  
  

0.146 
(8.11) 

     

D2020Q4t  
  

0.000 
(0.004) 

Log-Likelihood: 1078.6            1403.4              1746.2             1868.2 
 
Notes: Significance is determined using critical values for the trace test from Giles and Godwin (2012) for various values of 
𝑣𝑣1 as described in footnote 15 for details. +, *, and ** denote 90%, 95%, and 99% significance respectively. † indicates 
significance at the 90% level for the lower bracketing value only. Long-term coefficient estimates are for 𝑟𝑟 = 1. Absolute t-
statistics are in parentheses. For the short-run model, all coefficients are for the velocity equation. Γ1(i, j) is the 𝑖𝑖, 𝑗𝑗 element 
of Γ1 in eq. (5). Short run coefficients corresponding to higher order lags (Γ2, … Γ𝑘𝑘−1)  are omitted to save space.  

 
 

Model 1 
85Q3-05Q4 

Model 2 
85Q3-12Q4 

Model 3 
85Q3-19Q4 

Model 4 
85Q3-22Q4 
 

Constant 1.972 
(31.19) 

2.627 
(64.39) 

2.660 
(108.83) 

2.697 
(40.14) 

     

CFMAt  0.033 
(1.87) 

-0.114 
(7.22) 

-0.120 
(10.04) 

-0.126 
(4.11) 

     

LSloadt -0.643 
(16.17) 

-0.316 
(10.55) 

-0.277 
(15.58) 

-0.300 
(6.07) 

     

LBondt 0.539 
(10.64) 

0.011  
(0.38) 

 -0.026 
 (2.35) 

-0.043 
(1.62) 

Trace (𝑟𝑟 = 0) 66.20** 55.02** 55.52** 48.83* 
Trace (𝑟𝑟 = 1) 23.27† 25.79+ 18.14 21.52 
Trace (𝑟𝑟 = 2) 11.12+ 10.51   6.54  5.33 
𝑣𝑣1 or 1 − 𝑣𝑣1  0.244  0.422  0.469 0.426 
Rank (90%): Ambiguous 𝑟𝑟 = 2 𝑟𝑟 = 1 𝑟𝑟 = 1 
Lag length (𝑘𝑘)    4       6       7     5 
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Table 3: Quarterly Models of U.S. Consumption Velocity Excluding Long Treasury Yields 

Long-Run Relationship:  𝐿𝐿𝑀𝑀∗ = 𝜃𝜃0 + 𝜃𝜃1𝑃𝑃𝐶𝐶𝑀𝑀𝐶𝐶 + 𝜃𝜃2𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 
 

 

 

Short-Run:  Δ𝐿𝐿𝑀𝑀𝑡𝑡 = 𝛼𝛼1𝑃𝑃𝑃𝑃𝑡𝑡−1 + Γ1(1,1)Δ𝐿𝐿𝑀𝑀𝑡𝑡−1 + Γ1(1,2)Δ𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡−1 + ⋯ 

 

Log-Likelihood     829.8             1090.8             1375.2      1503.6 
 
Notes: Significance is determined using critical values for the trace test from Giles and Godwin (2012) for various values of 
𝑣𝑣1 as described in footnote 15 for details. +, *, and ** denote 90%, 95%, and 99% significance respectively. Long-term 
coefficient estimates are for 𝑟𝑟 = 1. Absolute t-statistics are in parentheses. For the short-run model, all coefficients are for 
the velocity equation. Γ1(i, j) is the 𝑖𝑖, 𝑗𝑗 element of Γ1 in eq. (5). Short run coefficients corresponding to higher order lags 
(Γ2, … Γ𝑘𝑘−1) are omitted to save space. 

 

 

 

 
 

Model 1 
85Q3-05Q4 

Model 2 
85Q3-12Q4 

Model 3 
85Q3-19Q4 

Model 4 
85Q3-22Q4 
 

Constant 2.631 
(89.50) 

2.630 
(91.39) 

2.631 
(90.84) 

2.638 
(80.55) 

     

CFMAt  -0.105 
(6.16) 

-0.100 
(7.52) 

-0.096 
(7.86) 

-0.091 
(6.45) 

     

LSloadt -0.306 
(12.02) 

-0.302 
(12.33) 

-0.304 
(12.35) 

-0.320 
(11.60) 

     

Trace (𝑟𝑟 = 0) 27.56* 32.43** 36.89** 57.17** 
Trace (𝑟𝑟 = 1)   9.93 10.45 11.92+   8.39 
Rank (90%): 𝑟𝑟 = 1 𝑟𝑟 = 1 𝑟𝑟 = 2 𝑟𝑟 = 1 
𝑣𝑣1 or 1 − 𝑣𝑣1 0.239 0.422 0.465 0.433 
Lag length (𝑘𝑘)    6   6    6    7 

ECt-1 -0.071 
(2.56) 

-0.119 
(4.17) 

-0.115 
(4.33) 

-0.091 
(5.65) 

     

ΔLVt-1 0.382 
(3.54) 

0.442 
(5.00) 

0.401 
(4.98) 

0.420 
(5.47) 

     

ΔLSloadt-1 -0.012 
(0.15) 

-0.069 
(0.91) 

-0.070 
(0.98) 

-0.082 
(1.14) 

     

D2020Q1t  
  

-0.035 
(5.23) 

     

D2020Q2t  
  

-0.204 
(27.83) 

     

D2020Q3t  
  

0.138 
(7.67) 

     

D2020Q4t  
  

-0.020 
(1.01) 
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Table 4: Quarterly P-Star Models of U.S. PCE (Consumer) Inflation, 2013Q1-2024Q3 

πt =α + β1 πt-1 +…+ β5 πt-5 + γvvgapt-1 + γccgapt-1 + Ω1(Δ)SupPresst-1 + Ω2DPEnergyt + εt 

   Model 1         Model 2        Model 3         Model 4       Model 5       Model 6   
 

Constant     1.147**   1.074**          1.427**           1.348**         1.217**         1.028**   
      (4.63)   (4.75)  (4.97)           (5.02)         (5.49)      (4.76) 
 

πt-1      0.207   0.189              0.109             0.091         0.084      0.071 

      (1.58)    (1.47)            (0.79)            (0.66)          (0.70)       (0.56) 
 

πt-2     -0.156   -0.153             -0.194            -0.191        -0.145           -0.142 
      (1.21)    (1.20)            (1.53)            (1.51)          (1.25)       (1.16) 
 

πt-3      0.198+    0.192+            0.141              0.136          0.210*       0.194+ 
      (1.86)    (1.82)            (1.30)            (1.26)            (2.20)       (1.93) 
 

πt-4      0.117    0.114              0.108             0.104         0.138       0.125 
      (1.08)    (1.06)            (1.02)            (1.00)          (1.43)       (1.23) 
 

πt-5     -0.026   -0.001             0.045             0.071         0.098             0.126   
      (0.26)   (0.01)  (0.42)           (0.69)         (1.02)      (1.24) 
 

vgap t-1        0.200**                  0.165**                      0.239**         
      (6.11)      (4.46)                     (7.77)        
  

cgap t-1        -0.038      0.004                     0.218    
      (0.19)                 (0.02)                      (1.14)         
  

pgap t-1              0.188**                0.153**                  0.201**  

(vgap-cgap)             (6.65)              (4.55)                 (7.47) 
 

DPEnergyt    -2.781**    -3.015**         -2.777**         -3.022**        -2.716**        -3.288** 
      (2.97)    (3.44)            (3.05)            (3.55)          (3.31)       (4.00) 
  

SupPresst-1 3,4     0.451+           0.446+            0.391       0.285  

ΔSupPresst-1 5,6    (1.78)           (1.77)            (1.55)      (1.09) 
  

ΔSupPresst-2 5,6                          0.794**       0.600* 

                  (3.33)      (2.57) 
 

D2020Q2t    -4.303**   -3.869**         -4.858**         -4.400**        -5.819**        -4.403** 
      (4.14)    (4.52)            (4.60)            (4.97)          (5.61)       (5.11) 
 

D2020Q3t    -2.904  -1.190            -4.020            -2.218+        -8.462**     -3.001* 
      (1.13)    (1.03)            (1.56)            (1.75)          (3.08)       (2.36) 
 

D2020Q4t    -4.671**   -4.175**         -4.762**         -4.241**        -6.206**        -4.667** 
      (3.58)    (3.75)            (3.76)            (3.91)          (4.70)       (3.94) 
Adjusted R2       .831               .833               .841               .843           .871        .856   
S.E.        0.829   0.824  0.804             0.800         0.725            0.765  
LM(1)                   0.38     0.68               0.15             0.25           1.30        0.07 

LM(4)                 14.07**     9.31+   8.13+               5.99           8.81+        2.41 
 
Notes: +,*,** denote 90%, 95% & 99% significance. v* uses coefficients from Model 2, Table 3, estimated over 1985Q3-
2012Q4. cgap, is formed from real PCE and an estimate of trend real PCE from a one-sided HP filter.  



54 
 

Table 5: Quarterly P-Star Models of U.S. Core PCE (Consumer) Inflation, 2013Q1-2024Q3 
πt =α + β1 πt-1 +…+ β5 πt-5 + γvvgapt-1 + γccgapt-1 + Ω1(Δ)SupPresst-1 + Ω2DPEnergyt + εt 

   Model 1         Model 2        Model 3         Model 4       Model 5       Model 6   
 

Constant     0.922**   0.905**          1.075**           1.067**         0.808**         0.778**   
      (5.64)   (5.82)  (6.23)           (6.40)         (5.15)      (5.04) 
 

πt-1      0.313*    0.298*            0.249+            0.239*          0.346**      0.307** 

      (2.51)    (2.54)            (2.02)            (2.08)          (2.98)       (2.80) 
 

πt-2     -0.288*    -0.292*          -0.320*           -0.323**        -0.233+         -0.245* 
      (2.37)    (2.43)            (2.73)            (2.79)          (2.03)       (2.15) 
 

πt-3      0.328**    0.321**          0.272**           0.267**         0.273**      0.261** 
      (3.61)    (3.65)            (2.99)            (3.05)          (3.15)       (3.04) 
 

πt-4     -0.064   -0.059            -0.052            -0.049        -0.039      -0.029 
      (0.69)    (0.64)            (0.58)            (0.56)          (0.46)       (0.34) 
 

πt-5      0.206*    0.223*           0.273**           0.283**         0.228*           0.265**   
      (2.10)   (2.54)  (2.75)           (3.21)         (2.50)      (3.16) 
 

vgap t-1        0.138**                  0.116**                      0.135**         
      (7.43)      (5.61)                     (7.80)        
  

cgap t-1        -0.087                -0.087                     -0.009    
      (0.69)                 (0.72)                      (0.07)         
  

pgap t-1              0.136**                0.115**                  0.130**  

(vgap-cgap)             (7.73)               (5.88)                 (7.80) 
 

DPEnergyt    -0.822   -0.892+          -0.783            -0.822+        -0.714            -0.886* 
      (1.66)    (1.95)            (1.65)            (1.88)          (1.55)       (2.07) 
  

SupPresst-1 3,4     0.247*           0.249*            0.369*       0.337* 

ΔSupPresst-1 5,6    (2.08)           (2.14)            (2.64)      (2.48) 
 

D2020Q2t    -3.194**   -3.066**         -3.434**         -3.364**        -3.781**        -3.432** 
      (5.65)    (6.70)            (6.21)            (7.34)          (6.66)       (7.57) 
 

D2020Q3t    -0.875   -0.375            -1.135             -0.854         -1.956      -0.700 
      (0.61)    (0.55)            (0.82)            (1.24)          (1.40)       (1.07) 
 

D2020Q4t    -3.872**   -3.746**         -3.835**         -3.764**        -3.400**        -3.149** 
      (5.04)    (5.43)            (5.22)            (5.71)          (4.64)       (4.57) 
Adjusted R2       .906               .909               .914               .917           .920        .920   
S.E.        0.450   0.445  0.430             0.424         0.416            0.416  
LM(1)                   0.26     0.12               0.01             0.00           0.46        0.14 

LM(4)                 10.88*     9.13+`   6.03               6.00           8.02+        6.65 
Notes: +,*,** denote 90%, 95% & 99% significance. v* uses coefficients from Model 2, Table 3,  estimated over 1985Q3-
2012Q4. cgap, is formed from real PCE and an estimate of trend real PCE from a one-sided HP filter. 
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Table 6: Quarterly P-Star Models of U.S. PCE Inflation (HP Filter), 2013Q1-24Q3 

πt =α + β1 πt-1 +…+ β5 πt-5 + γvvgapt-1 + γccgapt-1 + Ω1(Δ)SupPresst-1 + Ω2DPEnergyt + εt 

   Model 1         Model 2        Model 3         Model 4       Model 5       Model 6   
 

Constant     0.104   0.083             1.364*            1.357*         -0.032          -0.051    
      (0.29)   (0.23)  (2.63)           (2.62)         (0.09)      (0.14) 
 

πt-1      0.478**   0.531**           0.154             0.198         0.428*      0.443* 

      (2.85)    (3.44)            (0.84)            (1.14)          (2.47)       (2.70) 
 

πt-2      0.054    0.067             -0.098            -0.088         0.103            0.112 
      (0.32)    (0.40)            (0.62)            (0.56)          (0.59)       (0.66) 
 

πt-3      0.242    0.264+            0.046              0.063          0.236       0.244 
      (1.60)    (1.78)            (0.30)            (0.43)            (1.53)       (1.62) 
 

πt-4      0.103    0.115             0.032             0.042         0.142       0.149 
      (0.67)    (0.76)            (0.23)            (0.30)          (0.89)       (0.96) 
 

πt-5      0.068    0.051             0.118             0.103         0.161            0.163   
      (0.44)   (0.33)  (0.85)           (0.75)         (0.94)      (0.96) 
 

vgapHP t-1        0.180+                  0.007                      0.212*          
      (1.99)      (0.07)                     (2.24)        
  

cgap t-1        -0.416                -0.217                    -0.310     

      (1.60)                 (0.90)                      (1.13)         
  

pgapHP t-1              0.214*                  0.036                  0.227**  

(vgap-cgap)             (2.65)               (0.39)                 (2.81) 
 

DPEnergyt    -3.084*     -2.748*           -2.975*           -2.676*         -3.097*          -2.976*  
      (2.42)    (2.29)            (2.60)            (2.48)          (2.42)       (2.47) 
  

SupPresst-1 3,4     1.024**           1.033**           0.449       0.483  

ΔSupPresst-1 5,6    (3.09)           (3.14)            (1.11)      (1.25) 
  

ΔSupPresst-2 5,6                          0.259        0.289 

                  (0.73)      (0.86) 
 

D2020q2t    -2.826*   -3.431**         -4.201**         -4.751**        -3.807*          -4.108** 
      (2.04)    (2.94)            (3.19)            (4.22)          (2.39)       (3.26) 
 

D2020q3t     3.418    0.951              0.964            -1.252         0.620      -0.524 
      (1.00)    (0.60)            (0.31)            (0.79)          (0.15)       (0.28) 
 

D2020q4t    -1.640    -2.298            -1.950             -2.538+        -1.718           -1.982  
      (0.97)    (1.55)            (1.28)            (1.91)          (0.93)       (1.22) 
Adjusted R2       .686               .689               .748               .751           .683        .692   
S.E.        1.130   1.124  1.012             1.008         1.136            1.121  
LM(1)                   8.66**   10.61**            1.88             3.03+           5.48*        5.99* 

LM(4)                 10.84*   13.42**   1.95                 3.40           6.60         6.87 
 
Notes: +,*,** denote 90%, 95% & 99% significance. vgapHP is formed from velocity and an estimate of trend velocity from 
a one-sided HP filter. cgap, is formed from real PCE and an estimate of trend real PCE from a one-sided HP filter.  
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Table 7: Quarterly P-Star Models of U.S. Core PCE Inflation (HP Filter), 2013q1-24q3 

πt =α + β1 πt-1 +…+ β5 πt-5 + γvvgapt-1 + γccgapt-1 + Ω1(Δ)SupPresst-1 + Ω2DPEnergyt + εt 

   Model 1         Model 2        Model 3         Model 4       Model 5       Model 6   
 

Constant    -0.437    -0.415             0.486             0.434         -0.714*         -0.593+   
      (1.26)   (1.26)  (1.07)           (1.03)         (2.19)      (1.91) 
 

πt-1      0.677**    0.659**          0.437*            0.466**          0.716**      0.640** 

      (4.09)    (4.51)            (2.53)            (3.11)          (4.77)       (4.74) 
 

πt-2     -0.022    -0.026            -0.141             -0.133         0.037             0.014 
      (0.14)    (0.16)            (0.92)            (0.89)          (0.25)       (0.10) 
 

πt-3      0.415**    0.405**          0.240+            0.259+         0.354**       0.318*  
      (2.99)    (3.12)            (1.71)            (2.01)          (2.78)       (2.57) 
 

πt-4     -0.086   -0.085            -0.100            -0.100        -0.015      -0.020 
      (0.62)    (0.62)            (0.79)            (0.80)          (0.11)       (0.15) 
 

πt-5      0.279+    0.287+           0.328*             0.317*          0.352*           0.375*  
      (1.80)   (1.91)  (2.30)           (2.31)         (2.47)      (2.64) 
 

vgapHP t-1        0.211**                  0.093                      0.240**         
      (3.10)      (1.25)                     (3.85)        
  

cgap t-1        -0.164                -0.157                     -0.026    
      (0.92)                 (0.97)                      (0.15)         
  

pgapHP t-1              0.203**                 0.106                   0.207**  

(vgap-cgap)             (3.39)               (1.64)                 (3.74) 
 

DPEnergyt    -0.931   -0.990            -0.878            -0.803         -0.717            -0.987  
      (1.32)    (1.52)            (1.36)            (1.34)          (1.12)       (1.65) 
  

SupPresst-1 3,4                0.472**           0.460**           0.580**       0.513** 

ΔSupPresst-1 5,6    (2.84)           (2.87)            (2.95)      (2.73) 
 

D2020Q2t    -2.895**   -2.778**         -3.221**         -3.367**        -3.992**        -3.376** 
      (3.52)    (4.30)            (4.24)            (5.39)          (4.80)       (5.32) 
 

D2020Q3t     0.383    0.862             0.686              0.042         -2.231       0.093 
      (0.17)    (0.88)            (0.33)            (0.04)          (0.99)       (0.10) 
 

D2020Q4t    -2.809*    -2.673*         -2.478*            -2.667**        -2.537*          -1.995* 
      (2.43)    (2.72)            (2.34)            (2.97)          (2.42)       (2.12) 
Adjusted R2       .811               .816               .842               .846           .845        .844   
S.E.        0.640   0.632  0.584             0.577         0.579            0.582  
LM(1)                   5.83*     6.06*               6.98**             7.11**           0.85        1.45 

LM(4)                 11.20*   11.37*`   8.02+              8.37+           3.16        4.41 
 

Notes: +,*,** denote 90%, 95% & 99% significance. vgapHP is formed from velocity and an estimate of trend velocity 
from a one-sided HP filter. cgap, is formed from real PCE and an estimate of trend real PCE from a one-sided HP filter. 
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